This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232164 #52 May 19 2023 10:58:25 %S A232164 0,1,1,2,6,12,25,57,124,268,588,1285,2801,6118,13362,29168,63685, %T A232164 139057,303608,662888,1447352,3160121,6899745,15064810,32892270, %U A232164 71816436,156802881,342360937,747505396,1632091412,3563482500,7780451037,16987713169,37090703118 %N A232164 Number of Weyl group elements, not containing an s_r factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type C and rank n. %C A232164 Apart from the offset the same as A214663. - _R. J. Mathar_, Nov 27 2013 %C A232164 Apart from the initial 0, number of permutations of length n>=0 avoiding the partially ordered pattern (POP) {1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the last element. - _Sergey Kitaev_, Dec 08 2020 %D A232164 P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012. %H A232164 Vincenzo Librandi, <a href="/A232164/b232164.txt">Table of n, a(n) for n = 0..1000</a> %H A232164 Alice L. L. Gao and Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019. %H A232164 Alice L. L. Gao and Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26. %H A232164 P. E. Harris, E. Insko, and L. K. Williams, <a href="http://arxiv.org/abs/1401.0055">The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula</a>, arXiv preprint arXiv:1401.0055, 2013 %H A232164 B. Kostant, <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC528626/">A Formula for the Multiplicity of a Weight</a>, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589. %H A232164 László Németh and Dragan Stevanović, <a href="https://www.researchgate.net/publication/370765824_Graph_solution_of_system_of_recurrence_equations">Graph solution of system of recurrence equations</a>, Research Gate, 2023. See Table 1 at p. 3. %H A232164 Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, <a href="https://arxiv.org/abs/2101.12061">Permutations Avoiding Certain Partially-ordered Patterns</a>, arXiv:2101.12061 [math.CO], 2021. %H A232164 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,3,1). %F A232164 a(n) = A232164(n-1) + A232164(n-2) + 3*A232164(n-3) + A232164(n-4). %F A232164 From _Colin Barker_, Dec 31 2013: (Start) %F A232164 a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4). %F A232164 G.f.: -x/(x^4 + 3*x^3 + x^2 + x - 1). (End) %e A232164 For n=4, a(4)= A232164(3) + A232164(2) + 3*A232164(1) + A232164(0) = 2+1+3*1+0=6. %p A232164 a:=proc(n::nonnegint) %p A232164 if n=0 then return 0: %p A232164 elif n=1 then return 1: %p A232164 elif n=2 then return 1: %p A232164 elif n=3 then return 2: %p A232164 else return %p A232164 a(n-1)+a(n-2)+3*a(n-3)+a(n-4): %p A232164 end if; %p A232164 end proc: %t A232164 CoefficientList[Series[x/(1 - x - x^2 -3 x^3- x^4),{x, 0, 30}], x] (* _Vincenzo Librandi_, Dec 31 2013 *) %o A232164 (PARI) Vec(-x/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ _Colin Barker_, Dec 31 2013 %K A232164 nonn,easy %O A232164 0,4 %A A232164 _Pamela E Harris_, Nov 19 2013