This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232177 #17 May 05 2021 17:02:24 %S A232177 1,2,1,2,3,1,5,6,7,8,9,5,2,12,13,1,15,16,17,3,5,20,2,22,23,8,4,26,12, %T A232177 3,29,30,1,5,33,34,4,36,37,15,6,29,22,5,43,19,45,7,15,48,6,50,11,52,8, %U A232177 41,22,7,57,58,59,9,26,62,8,64,19,66,10,68,5,9,71,2 %N A232177 Least positive k such that triangular(n) + triangular(k) is a square. %C A232177 Triangular(k) = A000217(k) = k*(k+1)/2. %C A232177 For n>1, a(n) <= n-1, because with k=n-1: triangular(n) + triangular(k) = n*(n+1)/2 + (n-1)*n/2 = n^2. %t A232177 Table[k = 1; tri = n*(n + 1)/2; While[k <= n+2 && ! IntegerQ[Sqrt[tri + k*(k + 1)/2]], k++]; k, {n, 0, 100}] (* _T. D. Noe_, Nov 21 2013 *) %o A232177 (Python) %o A232177 import math %o A232177 for n in range(77): %o A232177 tn = n*(n+1)//2 %o A232177 for k in range(1, n+9): %o A232177 sum = tn + k*(k+1)//2 %o A232177 r = int(math.sqrt(sum)) %o A232177 if r*r == sum: %o A232177 print(str(k), end=',') %o A232177 break %Y A232177 Cf. A000217, A000290. %Y A232177 Cf. A082183 (least k>0 such that triangular(n) + triangular(k) is a triangular number). %Y A232177 Cf. A212614 (least k>1 such that triangular(n) * triangular(k) is a triangular number). %Y A232177 Cf. A232176 (least k>0 such that n^2 + triangular(k) is a square). %Y A232177 Cf. A232179 (least k>=0 such that n^2 + triangular(k) is a triangular number). %Y A232177 Cf. A101157 (least k>0 such that triangular(n) + k^2 is a triangular number). %Y A232177 Cf. A232178 (least k>=0 such that triangular(n) + k^2 is a square). %K A232177 nonn %O A232177 0,2 %A A232177 _Alex Ratushnyak_, Nov 20 2013