This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232179 #15 Sep 15 2017 03:20:03 %S A232179 0,0,3,1,15,2,0,3,63,4,8,5,11,6,20,3,255,8,1,9,3,10,38,11,59,12,45,13, %T A232179 8,14,2,15,1023,16,59,0,24,18,66,19,51,20,3,21,44,10,80,23,251,24,42, %U A232179 25,68,26,4,27,39,28,101,29,10,30,108,8,4095,32,5,33,128 %N A232179 Least k >= 0 such that n^2 + triangular(k) is a triangular number. %C A232179 Triangular(k) = k*(k+1)/2. %H A232179 Chai Wah Wu, <a href="/A232179/b232179.txt">Table of n, a(n) for n = 0..10000</a> %F A232179 a(A001109(n)) = 0. %t A232179 TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; Table[k = 0; While[! TriangularQ[n^2 + k*(k + 1)/2], k++]; k, {n, 0, 68}] (* _T. D. Noe_, Nov 21 2013 *) %o A232179 (Python) %o A232179 from __future__ import division %o A232179 from sympy import divisors %o A232179 def A232179(n): %o A232179 if n == 0: %o A232179 return 0 %o A232179 t = 2*n**2 %o A232179 ds = divisors(t) %o A232179 for i in range(len(ds)//2-1,-1,-1): %o A232179 x = ds[i] %o A232179 y = t//x %o A232179 a, b = divmod(y-x,2) %o A232179 if b: %o A232179 return a %o A232179 return -1 # _Chai Wah Wu_, Sep 12 2017 %o A232179 (PARI) a(n) = {my(k = 0); while (! ispolygonal(n^2 + k*(k+1)/2, 3), k++); k;} \\ _Michel Marcus_, Sep 15 2017 %Y A232179 Cf. A000217, A000290, A001109. %Y A232179 Cf. A082183 (least k>0 such that triangular(n) + triangular(k) is a triangular number). %Y A232179 Cf. A232177 (least k>0 such that triangular(n) + triangular(k) is a square). %Y A232179 Cf. A232176 (least k>0 such that n^2 + triangular(k) is a square). %Y A232179 Cf. A101157 (least k>0 such that triangular(n) + k^2 is a triangular number). %Y A232179 Cf. A232178 (least k>=0 such that triangular(n) + k^2 is a square). %K A232179 nonn %O A232179 0,3 %A A232179 _Alex Ratushnyak_, Nov 20 2013