This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232187 #16 Nov 25 2013 14:22:35 %S A232187 1,1,2,1,1,5,3,2,8,2,20,44,8,6,66,66,6,114,594,414,30,24,624,1584,624, %T A232187 24,864,8784,14544,4464,144,120,6840,36240,36240,6840,120,8280,147720, %U A232187 471120,353520,55320,840,720,86400,857520,1739520,857520,86400,720,96480 %N A232187 Number T(n,k) of parity alternating permutations of [n] with exactly k descents from odd to even numbers; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows. %C A232187 T(2n+1,k) = T(2n+1,n-k). %C A232187 T(2n+2,n) = T(2n+1,n) + T(2n+3,n+1). %H A232187 Alois P. Heinz, <a href="/A232187/b232187.txt">Rows n = 0..29, flattened</a> %F A232187 T(2n+1,k) = n! * A173018(n+1,k) = A000142(n) * A173018(n+1,k). %e A232187 T(5,0) = 2: 12345, 34125. %e A232187 T(5,1) = 8: 12543, 14325, 14523, 32145, 34521, 52143, 52341, 54123. %e A232187 T(5,2) = 2: 32541, 54321. %e A232187 T(6,2) = 8: 163254, 165432, 321654, 325416, 541632, 543216, 632541, 654321. %e A232187 T(7,0) = 6: 1234567, 1256347, 3412567, 3456127, 5612347, 5634127. %e A232187 T(7,1) = 66: 1234765, 1236547, 1236745, ..., 7456123, 7612345, 7634125. %e A232187 T(7,2) = 66: 1254763, 1276543, 1432765, ..., 7652143, 7652341, 7654123. %e A232187 T(7,3) = 6: 3254761, 3276541, 5432761, 5476321, 7632541, 7654321. %e A232187 Triangle T(n,k) begins: %e A232187 : 0 : 1; %e A232187 : 1 : 1; %e A232187 : 2 : 2; %e A232187 : 3 : 1, 1; %e A232187 : 4 : 5, 3; %e A232187 : 5 : 2, 8, 2; %e A232187 : 6 : 20, 44, 8; %e A232187 : 7 : 6, 66, 66, 6; %e A232187 : 8 : 114, 594, 414, 30; %e A232187 : 9 : 24, 624, 1584, 624, 24; %e A232187 : 10 : 864, 8784, 14544, 4464, 144; %e A232187 : 11 : 120, 6840, 36240, 36240, 6840, 120; %Y A232187 Column k=0 gives: A199660. %Y A232187 Row sums give: A092186 (for n>0). %Y A232187 T(2n+1,n) = A000142(n). %Y A232187 T(2n+2,n) = A001048(n+1). %K A232187 nonn,tabf %O A232187 0,3 %A A232187 _Alois P. Heinz_, Nov 20 2013