cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232190 a(n) is the number of primes of the form 2^b + 2n +- 2^k +- 1 and 2^(b+2) - 2^b - 2n +- 2^k +- 1, where b is the length of the binary representation of 2n, and 0

Original entry on oeis.org

5, 9, 7, 10, 11, 10, 10, 13, 14, 14, 15, 12, 13, 11, 12, 15, 18, 15, 15, 15, 17, 17, 18, 12, 15, 14, 14, 12, 16, 14, 13, 14, 16, 23, 20, 16, 18, 16, 17, 16, 17, 16, 16, 13, 17, 15, 15, 15, 20, 18, 20, 19, 17, 18, 18, 14, 15, 18, 18, 13, 17, 14, 15, 17, 17, 16
Offset: 1

Views

Author

Lei Zhou, Nov 20 2013

Keywords

Comments

Tested up to n = 1000000000, a(n)> 0.
If any zero terms exist, it is likely that the first one will appear in the interval [2*10^9, 2*10^10].
The terms of this sequence form a bell-shaped distribution with the commonest value of 21 when n is large enough. Up to the first 100 million terms, the range of a(n) is [3..55].

Examples

			When n=1, 2n=2, b=2, the set of numbers of the form 2^b + 2n + 2^k + 1 is {9, 11}; form 2^b + 2n + 2^k - 1: {7, 9}; form 2^b + 2n - 2^k - 1: {1, 3}; form 2^b + 2n - 2^k + 1: {3, 5}; form 2^(b+2) - 2^b - 2n - 2^k - 1: {7, 5}; form 2^(b+2) - 2^b - 2n - 2^k + 1: {9, 7}; form 2^(b+2) - 2^b - 2n + 2^k + 1: {15, 13}; form 2^(b+2) - 2^b - 2n + 2^k - 1: {13, 11}. The union of the above sets is {1, 3, 5, 7, 9, 11, 13, 15}. Among the 8 numbers, 5 are primes. So a(1)=5.
When n=11, using the same rule, the candidate number set is {21, 23, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 105, 107}. Among these 32 numbers, 15 are prime: {23, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 107}. So a(11)=15.
		

Crossrefs

Programs

  • Mathematica
    Table[n2 = 2*n; b = Ceiling[Log[2, n2 + 1]]; sdm = 2^b + n2 - 1;
    sdp = 2^b + n2 + 1; cset = {}; Do[cpmp = sdm + 2^k; cpmm = sdm - 2^k; cppp = sdp + 2^k; cppm = sdp - 2^k; upl = 2^(b + 2); cset = Join[
        cset, {cpmp, upl - cpmp, cpmm, upl - cpmm, cppp, upl - cppp, cppm,
          upl - cppm}], {k, 1, b}]; cset = Union[cset];
    size = Length[cset]; ct = 0;
    Do[If[PrimeQ[cset[[j]]], ct++], {j, 1, size}]; ct, {n, 1, 66}]

Extensions

Edited by Jon E. Schoenfield, Mar 28 2015