cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232239 Lesser of twin-bin primes: primes p such that p+2, x and y are primes, where x is concatenation of binary representations of p and p+2, and y is concatenation of binary representations of p+2 and p: x = p * 2^A070939(p+2) + p+2, y = (p+2) * 2^A070939(p) + p.

Original entry on oeis.org

3, 5, 269, 16649, 27689, 29129, 82889, 93239, 129629, 274199, 289169, 309479, 336899, 349079, 371339, 374639, 415109, 454709, 463889, 492719, 1051079, 1063919, 1127309, 1198289, 1209779, 1229519, 1268789, 1350959, 1354649, 1355279, 1392539, 1430879, 1547129, 1551959
Offset: 1

Views

Author

Alex Ratushnyak, Nov 20 2013

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			269 is in the sequence because the following are three primes: 271, 269 * 512 + 271 = 137999, 271 * 512 + 269 = 139021.
		

Crossrefs

Programs

  • Java
    import java.math.BigInteger;
    public class A232239 {
    public static void main (String[] args) {
    long bl = 2, next = 3; // bit length, next n such that bl++ for n + 2
    for (long n = 3; n < 0xffffffffL; n += 2) {
      long blPrev = bl;
      if (n == next) { ++bl; next = next * 2 + 1; }
      if (BigInteger.valueOf(n).isProbablePrime(80) &&
        BigInteger.valueOf(n + 2).isProbablePrime(80) &&
        BigInteger.valueOf((n << bl) + n + 2).isProbablePrime(80) &&
        BigInteger.valueOf(((n + 2) << blPrev) + n).isProbablePrime(80))
            System.out.printf("%d, ", n);
    }
    }
    }
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 2] && PrimeQ[FromDigits[Flatten[{IntegerDigits[#, 2], IntegerDigits[# + 2, 2]}], 2]] && PrimeQ[FromDigits[Flatten[{IntegerDigits[# + 2, 2], IntegerDigits[#, 2]}], 2]] &] (* Alonso del Arte, Jan 19 2014 *)