This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232243 #18 Mar 05 2023 01:57:32 %S A232243 0,0,0,0,0,1,0,0,0,1,1,2,0,1,0,0,0,1,1,2,1,3,2,-1,0,2,1,2,0,1,0,0,0,1, %T A232243 1,2,1,3,2,3,1,2,3,3,2,4,-1,-1,0,2,2,1,1,4,2,2,0,2,1,2,0,1,0,0,0,1,1, %U A232243 2,1,3,2,3,1,3,3,5,2,3,3,0,1,3,2,4,3,3,3,2,2,5,4,0,-1,1,-1,-1,0,2,2,2 %N A232243 a(n) = wt(n^2) - wt(n), where wt(n) = A000120(n) is the binary weight function. %C A232243 A077436 lists n for which a(n) = 0. %C A232243 A094694 lists n for which a(n) < 0. %H A232243 Dumitru Damian, <a href="/A232243/b232243.txt">Table of n, a(n) for n = 0..10000</a> %F A232243 a(n) = A159918(n) - A000120(n). %e A232243 a(5): 5 = 101_2, 25 = 11001_2, so a(5) = 3 - 2 = 1. %e A232243 a(23): 23 = 10111_2, 529 = 10001001_2, so a(23) = 3 - 4 = -1. %o A232243 (JavaScript) %o A232243 function bitCount(n) { %o A232243 var i,c,s; %o A232243 c=0; %o A232243 s=n.toString(2); %o A232243 for (i=0;i<s.length;i++) %o A232243 if (s.charAt(i)==1) %o A232243 c++; %o A232243 return c; %o A232243 } %o A232243 for (i=0;i<100;i++) document.write(bitCount(i*i)-bitCount(i)+", "); %o A232243 (Python) %o A232243 def A232243(n): return (n**2).bit_count()-n.bit_count() %o A232243 print(list(A232243(n) for n in range(10**2))) # _Dumitru Damian_, Mar 04 2023 %o A232243 (PARI) a(n) = hammingweight(n^2) - hammingweight(n); \\ _Michel Marcus_, Mar 05 2023 %Y A232243 Cf. A000120, A159918, A077436, A094694, A231898. %K A232243 sign,base %O A232243 0,12 %A A232243 _Jon Perry_, Nov 20 2013