This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232274 #22 Feb 16 2025 08:33:20 %S A232274 168,2688,13608,43008,105000,108000,217728,403368,688128,1102248, %T A232274 1680000,1728000 %N A232274 Integer areas A of the integer-sided triangles such that the length of the inradius and the circumradius are both a perfect square. %C A232274 Subset of A208984. %C A232274 The areas of the primitive triangles of sides (a, b, c) and inradius, circumradius equals respectively to r and R are 672, 108000, ... The sides of the nonprimitive triangles are of the form (a*k^2, b*k^2, c*k^2) with r' = r*k^2 and R' = R*k^2 where r', R' are respectively the inradius and the circumradius of the nonprimitive triangles. The areas A' of the nonprimitive triangles are A' = A*k^4. %C A232274 The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The inradius r is given by r = A/s and the circumradius is given by R = abc/4A. %C A232274 The following table gives the first values (A, a, b, c, r, R). %C A232274 +---------+------+------+------+-----+------+ %C A232274 | A | a | b | c | r | R | %C A232274 +---------+------+------+------+-----+------+ %C A232274 | 168 | 14 | 30 | 40 | 4 | 25 | %C A232274 | 2688 | 56 | 120 | 160 | 16 | 100 | %C A232274 | 13608 | 126 | 270 | 360 | 36 | 225 | %C A232274 | 43008 | 224 | 480 | 640 | 64 | 400 | %C A232274 | 105000 | 350 | 750 | 1000 | 100 | 625 | %C A232274 | 108000 | 480 | 510 | 510 | 144 | 289 | %C A232274 | 217728 | 504 | 1080 | 1440 | 144 | 900 | %C A232274 | 403368 | 686 | 1470 | 1960 | 196 | 1225 | %C A232274 | 688128 | 896 | 1920 | 2560 | 256 | 1600 | %C A232274 | 1102248 | 1134 | 2430 | 3240 | 324 | 2025 | %C A232274 | 1680000 | 1400 | 3000 | 4000 | 400 | 2500 | %C A232274 | 1728000 | 1920 | 2040 | 2040 | 576 | 1156 | %C A232274 +---------+------+------+------+-----+------+ %H A232274 Mohammad K. Azarian, <a href="http://www.jstor.org/stable/25678790">Solution of problem 125: Circumradius and Inradius</a>, Math Horizons, Vol. 16, No. 2 (Nov. 2008), p. 32. %H A232274 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/Circumradius.html">MathWorld: Circumradius</a> %H A232274 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/Inradius.html">MathWorld: Inradius</a> %e A232274 a(1) = 168 because, for (a,b,c) = (14, 30, 40) => s= (14 + 30 + 40)/2 = 42, and %e A232274 A = sqrt(42*(42-14)*(42-30)*(42-40)) = sqrt(28224) = 168; %e A232274 R = abc/4A = 14*30*40/(4*168) = 25; %e A232274 r = A/s = 168/42 = 4. %t A232274 nn=2000;Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a)(s-b)(s-c);If[0<area2&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[Sqrt[area2]/s]]&&IntegerQ[Sqrt[a*b*c/(4*Sqrt[area2])]],Print[Sqrt[area2]," ",a " ",b," ",c," ", Sqrt[area2]/s," ", a*b*c/(4*Sqrt[area2])]]],{a,nn},{b,a},{c,b}] %Y A232274 Cf. A188158, A208984. %K A232274 nonn,hard %O A232274 1,1 %A A232274 _Michel Lagneau_, Nov 22 2013