cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232275 T(n,k)=Number of nXk 0..3 arrays with every 0 next to a 1, every 1 next to a 2 and every 2 next to a 3 horizontally, vertically, diagonally or antidiagonally, and no adjacent values equal.

Original entry on oeis.org

1, 2, 2, 4, 24, 4, 8, 48, 48, 8, 14, 96, 72, 96, 14, 26, 192, 120, 120, 192, 26, 48, 384, 216, 168, 216, 384, 48, 88, 768, 408, 264, 264, 408, 768, 88, 162, 1536, 792, 456, 360, 456, 792, 1536, 162, 298, 3072, 1560, 840, 552, 552, 840, 1560, 3072, 298, 548, 6144, 3096
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Table starts
...1....2....4....8...14...26...48...88..162...298...548..1008..1854...3410
...2...24...48...96..192..384..768.1536.3072..6144.12288.24576.49152..98304
...4...48...72..120..216..408..792.1560.3096..6168.12312.24600.49176..98328
...8...96..120..168..264..456..840.1608.3144..6216.12360.24648.49224..98376
..14..192..216..264..360..552..936.1704.3240..6312.12456.24744.49320..98472
..26..384..408..456..552..744.1128.1896.3432..6504.12648.24936.49512..98664
..48..768..792..840..936.1128.1512.2280.3816..6888.13032.25320.49896..99048
..88.1536.1560.1608.1704.1896.2280.3048.4584..7656.13800.26088.50664..99816
.162.3072.3096.3144.3240.3432.3816.4584.6120..9192.15336.27624.52200.101352
.298.6144.6168.6216.6312.6504.6888.7656.9192.12264.18408.30696.55272.104424

Examples

			Some solutions for n=7 k=4
..3..0..3..0....0..1..0..1....1..0..1..0....3..2..3..2....0..2..0..2
..1..2..1..2....3..2..3..2....3..2..3..2....0..1..0..1....3..1..3..1
..0..3..0..3....1..0..1..0....1..0..1..0....3..2..3..2....0..2..0..2
..1..2..1..2....3..2..3..2....2..3..2..3....1..0..1..0....3..1..3..1
..3..0..3..0....0..1..0..1....1..0..1..0....3..2..3..2....2..0..2..0
..2..1..2..1....2..3..2..3....2..3..2..3....1..0..1..0....3..1..3..1
..0..3..0..3....1..0..1..0....1..0..1..0....2..3..2..3....0..2..0..2
		

Crossrefs

Column 1 is A135491(n-1)
Column 2 is A003945(n+2)
Diagonal is 12*A000918 for n>1

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3) for n>4
k=2: a(n) = 2*a(n-1) for n>2
k=3: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=4: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=5: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=6: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=7: a(n) = 3*a(n-1) -2*a(n-2) for n>3
Apparently T(n,k)=12*(2^(n-1)+2^(k-1)-2) for n>1 and k>1