cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A232317 Number of (1+1)X(n+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

2, 5, 16, 52, 169, 549, 1784, 5797, 18837, 61210, 198899, 646313, 2100164, 6824385, 22175521, 72058322, 234150159, 760860029, 2472379204, 8033880997, 26105721877, 84829326570, 275648943179, 895708394113, 2910562681764, 9457737786265
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Row 1 of A232316

Examples

			Some.solutions.for.n=7
..0..0..1..1..0..0..0..1....0..0..0..1..1..0..0..0....0..0..0..1..1..1..0..0
..1..1..1..1..0..1..1..1....0..0..1..1..1..0..1..1....0..0..0..0..1..1..1..1
		

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) for n>5.
Empirical: G.f.: 2*x -x^2*(-5-x+x^2+3*x^3) / ( 1-3*x-x^2+2*x^4 ). - R. J. Mathar, Nov 24 2013

A232310 Number of (n+1)X(n+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

2, 24, 1202, 231454, 161243887, 400571676322, 3587649343841650, 115662789623304964655, 13420410026776778616974635, 5604396268950285334109397116334, 8423557107575828118320152665611119144
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Diagonal of A232316

Examples

			Some.solutions.for.n=3
..0..0..1..1....0..0..1..0....0..0..1..1....0..0..0..1....0..0..0..1
..0..1..1..1....1..1..0..1....0..1..1..0....0..0..1..0....0..0..1..1
..1..0..1..1....0..0..1..1....1..0..0..1....0..1..0..1....0..1..1..1
..0..0..0..0....1..1..0..0....1..1..1..1....0..0..1..1....1..1..1..1
		

A232311 Number of (n+1)X(3+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

16, 139, 1202, 10409, 90157, 780922, 6764246, 58591124, 507509767, 4395993154, 38077604237, 329823977717, 2856898655026, 24746138781034, 214348305112232, 1856661207278099, 16082193123986242, 139302170295461137
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Column 3 of A232316

Examples

			Some.solutions.for.n=5
..0..0..0..0....0..0..1..0....0..0..0..0....0..0..1..0....0..0..0..0
..0..1..1..1....0..1..0..0....0..0..0..0....1..1..0..0....0..1..1..1
..0..0..0..0....1..1..1..0....1..1..0..0....1..1..1..0....1..1..1..0
..1..1..0..0....0..0..0..1....0..0..1..0....1..0..0..1....0..0..0..0
..1..0..1..1....0..0..1..1....0..1..0..1....0..1..1..0....1..1..1..0
..1..1..1..1....1..1..1..1....1..1..1..1....1..0..0..0....1..0..0..0
		

Formula

Empirical: a(n) = 10*a(n-1) -11*a(n-2) -5*a(n-3) -a(n-4).
Empirical: G.f.: -x*(-16+21*x+12*x^2+2*x^3) / ( 1-10*x+11*x^2+5*x^3+x^4 ). - R. J. Mathar, Nov 24 2013

A232312 Number of (n+1)X(4+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

52, 853, 14042, 231454, 3815483, 62897985, 1036869496, 17092731689, 281772661177, 4645005493684, 76572638191385, 1262295368124753, 20808863766803180, 343032876614802177, 5654876487122281889
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Column 4 of A232316

Examples

			Some.solutions.for.n=3
..0..0..0..1..1....0..0..1..1..1....0..0..0..1..1....0..0..1..0..1
..1..1..1..0..1....0..0..1..1..0....0..0..1..1..1....0..1..0..1..1
..0..0..0..1..1....0..0..0..0..0....0..0..1..1..0....1..1..1..0..0
..0..0..1..1..1....1..1..0..0..0....0..0..1..0..0....0..0..0..0..0
		

Formula

Empirical: a(n) = 19*a(n-1) -44*a(n-2) +43*a(n-3) -19*a(n-4) +4*a(n-5) -2*a(n-6) for n>7

A232313 Number of (n+1)X(5+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

169, 5241, 164014, 5142441, 161243887, 5055954492, 158534446141, 4971005036586, 155870804492221, 4887484036570530, 153251920996775699, 4805366342762017785, 150677039074382364646, 4724628360214774512921, 148145419363647806378212
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Column 5 of A232316

Examples

			Some.solutions.for.n=3
..0..0..0..0..1..1....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..1
..0..0..0..0..1..1....0..1..0..0..0..0....0..1..0..0..1..1....0..0..1..0..1..1
..1..1..0..0..1..1....1..0..1..1..1..1....1..0..1..0..1..1....0..1..1..0..0..0
..1..0..1..1..1..1....0..0..0..1..0..0....1..1..0..1..0..0....1..0..0..0..1..1
		

Formula

Empirical: a(n) = 37*a(n-1) -184*a(n-2) +218*a(n-3) +76*a(n-4) -88*a(n-5) -273*a(n-6) +168*a(n-7) +210*a(n-8) -81*a(n-9) -107*a(n-10) +35*a(n-11) -a(n-12) for n>13

A232314 Number of (n+1)X(6+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

549, 32089, 1905436, 113293694, 6736602042, 400571676322, 23818815015639, 1416315842358249, 84217060496525106, 5007720081104988709, 297769362466646214990, 17705980324085995012465, 1052834101669304585327957
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Column 6 of A232316

Examples

			Some.solutions.for.n=2
..0..0..1..1..1..0..0....0..0..1..0..0..1..1....0..0..0..0..0..1..1
..0..0..1..0..1..1..0....1..1..1..1..1..0..0....0..0..1..0..0..1..1
..0..0..0..0..0..0..0....1..1..0..0..0..1..1....1..1..1..0..0..1..1
		

Formula

Empirical: a(n) = 72*a(n-1) -776*a(n-2) +1665*a(n-3) +9178*a(n-4) -25937*a(n-5) -66159*a(n-6) +136942*a(n-7) +220000*a(n-8) -272204*a(n-9) -190803*a(n-10) +93056*a(n-11) -91520*a(n-12) -19693*a(n-13) -8950*a(n-14) -5251*a(n-15) +211*a(n-16) -842*a(n-17) -172*a(n-18) for n>20

A232315 Number of (n+1) X (7+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

1784, 196698, 22161823, 2499669158, 281959315373, 31805180533255, 3587649343841650, 404689731634719335, 45649328032459819031, 5149281019623345273371, 580843052186352251086893
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Column 7 of A232316.

Examples

			Some solutions for n=2
..0..0..0..0..0..0..0..0....0..0..1..0..0..0..0..0....0..0..1..1..0..0..0..0
..0..0..1..0..0..0..1..1....0..1..1..0..0..1..1..0....0..0..0..0..0..0..0..0
..0..1..0..0..1..1..1..1....1..0..0..1..1..1..0..0....1..1..1..0..1..1..1..1
		

Crossrefs

Cf. A232316.

Formula

Empirical: a(n) = 141*a(n-1) -3378*a(n-2) +21209*a(n-3) +130164*a(n-4) -1632986*a(n-5) -1334372*a(n-6) +50173398*a(n-7) -17669770*a(n-8) -851814078*a(n-9) +566664547*a(n-10) +8298312643*a(n-11) -6773841647*a(n-12) -41349039011*a(n-13) +57182971805*a(n-14) +100779202558*a(n-15) -263951756782*a(n-16) -31349979351*a(n-17) +610312404926*a(n-18) -356266779364*a(n-19) -574818621993*a(n-20) +533901016004*a(n-21) -116525671276*a(n-22) +147213549964*a(n-23) +588901546623*a(n-24) -685413663937*a(n-25) -479062341184*a(n-26) +407490489945*a(n-27) +182418293712*a(n-28) -49631689847*a(n-29) -20468478023*a(n-30) +616705146*a(n-31) +416198455*a(n-32) +31964045*a(n-33) -141509*a(n-34) -15786*a(n-35) -972*a(n-36) +a(n-37) for n>40.

A232318 Number of (2+1)X(n+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

5, 24, 139, 853, 5241, 32089, 196698, 1205422, 7387476, 45274221, 277463582, 1700438900, 10421159854, 63866201729, 391404773682, 2398728792093, 14700637816523, 90093032996396, 552136219923131, 3383773364176424
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Row 2 of A232316

Examples

			Some solutions for n=7
..0..0..1..0..1..0..0..1....0..0..0..0..0..1..0..0....0..0..0..0..1..1..1..0
..0..1..0..1..1..0..1..0....0..0..1..1..1..1..1..0....0..1..1..1..0..1..0..0
..0..0..1..1..1..1..0..0....1..1..0..0..1..1..0..0....1..0..0..0..1..1..1..1
		

Formula

Empirical: a(n) = 5*a(n-1) +9*a(n-2) -10*a(n-3) -19*a(n-4) +9*a(n-5) +21*a(n-6) -15*a(n-8) -5*a(n-9) +5*a(n-10) +4*a(n-11) -2*a(n-12) for n>14

A232319 Number of (3+1)X(n+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

13, 115, 1202, 14042, 164014, 1905436, 22161823, 257723189, 2997153100, 34854893113, 405339144562, 4713824245681, 54818634195843, 637504183234586, 7413748797343868, 86216957745461401, 1002645760786026294
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Row 3 of A232316

Examples

			Some solutions for n=5
..0..0..1..0..1..1....0..0..0..1..1..1....0..0..1..1..1..1....0..0..0..0..0..1
..0..1..0..0..1..1....0..0..0..0..1..1....0..1..0..0..0..0....0..1..1..1..1..0
..0..0..0..1..0..0....0..1..1..1..1..1....0..0..0..1..0..0....0..0..0..1..0..1
..0..1..1..1..1..1....1..1..0..0..1..1....1..1..1..0..1..1....0..1..1..1..1..1
		

Formula

Empirical: a(n) = 10*a(n-1) +31*a(n-2) -109*a(n-3) -423*a(n-4) +475*a(n-5) +2814*a(n-6) -563*a(n-7) -11261*a(n-8) -3072*a(n-9) +29843*a(n-10) +16787*a(n-11) -54209*a(n-12) -43221*a(n-13) +65550*a(n-14) +74635*a(n-15) -48250*a(n-16) -90588*a(n-17) +14301*a(n-18) +74590*a(n-19) +8049*a(n-20) -40363*a(n-21) -5412*a(n-22) +7933*a(n-23) +1763*a(n-24) +602*a(n-25) +322*a(n-26) -29*a(n-27) -378*a(n-28) -22*a(n-29) +42*a(n-30) +12*a(n-31) -4*a(n-32) for n>34

A232320 Number of (4+1)X(n+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

34, 551, 10409, 231454, 5142441, 113293694, 2499669158, 55147236337, 1216656297612, 26841719357568, 592179351445235, 13064599837184618, 288229857559634498, 6358897503996161509, 140289343114550595132
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Row 4 of A232316

Examples

			Some.solutions.for.n=3
..0..0..0..0....0..0..1..0....0..0..0..0....0..0..1..1....0..0..0..1
..0..1..0..0....0..1..0..0....1..1..1..1....0..0..1..1....0..0..1..0
..1..0..0..0....1..0..0..1....1..1..1..0....0..1..1..0....0..1..0..0
..1..1..1..1....0..1..1..0....0..0..0..1....1..0..0..1....1..1..0..1
..1..1..1..1....1..0..0..0....1..1..1..1....0..0..1..1....1..0..1..1
		

Formula

Empirical recurrence of order 78 (see link above)
Showing 1-10 of 13 results. Next