A232319 Number of (3+1)X(n+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.
13, 115, 1202, 14042, 164014, 1905436, 22161823, 257723189, 2997153100, 34854893113, 405339144562, 4713824245681, 54818634195843, 637504183234586, 7413748797343868, 86216957745461401, 1002645760786026294
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..0..1..1....0..0..0..1..1..1....0..0..1..1..1..1....0..0..0..0..0..1 ..0..1..0..0..1..1....0..0..0..0..1..1....0..1..0..0..0..0....0..1..1..1..1..0 ..0..0..0..1..0..0....0..1..1..1..1..1....0..0..0..1..0..0....0..0..0..1..0..1 ..0..1..1..1..1..1....1..1..0..0..1..1....1..1..1..0..1..1....0..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 10*a(n-1) +31*a(n-2) -109*a(n-3) -423*a(n-4) +475*a(n-5) +2814*a(n-6) -563*a(n-7) -11261*a(n-8) -3072*a(n-9) +29843*a(n-10) +16787*a(n-11) -54209*a(n-12) -43221*a(n-13) +65550*a(n-14) +74635*a(n-15) -48250*a(n-16) -90588*a(n-17) +14301*a(n-18) +74590*a(n-19) +8049*a(n-20) -40363*a(n-21) -5412*a(n-22) +7933*a(n-23) +1763*a(n-24) +602*a(n-25) +322*a(n-26) -29*a(n-27) -378*a(n-28) -22*a(n-29) +42*a(n-30) +12*a(n-31) -4*a(n-32) for n>34
Comments