A232331 Number of nX4 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.
6, 32, 154, 734, 3472, 16338, 76630, 358656, 1676330, 7828014, 36533360, 170436130, 794923238, 3706958560, 17284778298, 80589690622, 375729468240, 1751693001458, 8166429157878, 38071572583616, 177486683779786, 827424427937102
Offset: 1
Keywords
Examples
Some solutions for n=7 ..0..1..2..1....2..1..2..1....0..1..0..2....2..1..2..1....2..1..0..2 ..2..1..0..2....0..1..0..2....2..1..0..2....0..1..2..1....2..1..0..1 ..2..1..0..2....0..1..0..1....0..2..1..0....0..1..2..1....2..1..2..1 ..2..1..0..2....2..1..2..1....1..0..1..0....0..1..0..2....0..1..0..2 ..0..1..0..2....0..1..0..2....1..2..1..2....0..2..0..2....0..2..1..2 ..2..1..0..2....0..2..1..0....1..2..1..0....0..1..0..1....1..0..1..0 ..0..2..1..0....1..2..1..0....1..0..2..1....2..1..2..1....2..0..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 7*a(n-1) -9*a(n-2) -8*a(n-3) -4*a(n-4).
Empirical: G.f.: -2*x*(-3+5*x+8*x^2+4*x^3) / ( 1-7*x+9*x^2+8*x^3+4*x^4 ). - R. J. Mathar, Nov 24 2013
Comments