A232332 Number of n X 5 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.
10, 82, 628, 4906, 38986, 312276, 2510674, 20221026, 162993780, 1314329242, 10600203674, 85498798420, 689639995266, 5562789156722, 44871062410868, 361944328742026, 2919563842456426, 23550196645340116, 189963983083385394
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0..1..2..1..0....0..1..2..1..2....0..1..2..1..0....0..1..2..1..0 ..2..1..0..1..2....0..1..2..1..2....0..1..2..1..2....2..1..2..1..2 ..2..1..2..1..0....0..1..2..1..2....0..1..0..1..0....0..1..2..1..0 ..0..1..2..1..0....2..1..0..1..0....2..1..2..1..0....0..1..0..1..2 ..0..1..2..1..0....2..1..2..1..0....0..1..0..1..2....0..1..2..1..0 ..0..1..0..1..2....0..1..0..1..2....2..1..0..1..0....0..1..0..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A232335.
Formula
Empirical: a(n) = 11*a(n-1) - 21*a(n-2) - 20*a(n-3) - 12*a(n-4) for n>5.
Empirical g.f.: 2*x*(5 - 14*x - 32*x^2 - 40*x^3 - 16*x^4) / (1 - 11*x + 21*x^2 + 20*x^3 + 12*x^4). - Colin Barker, Oct 04 2018