This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232335 #6 Jul 23 2025 07:19:22 %S A232335 1,2,1,4,6,1,6,18,16,1,10,32,74,42,1,16,82,154,308,110,1,26,162,628, %T A232335 734,1282,288,1,42,388,1470,4906,3472,5338,754,1,68,806,5530,13170, %U A232335 38986,16338,22228,1974,1,110,1858,13906,82526,117690,312276,76630,92562,5168 %N A232335 T(n,k)=Number of nXk 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal. %C A232335 Table starts %C A232335 .1.....2.......4.......6.........10.........16............26............42 %C A232335 .1.....6......18......32.........82........162...........388...........806 %C A232335 .1....16......74.....154........628.......1470..........5530.........13906 %C A232335 .1....42.....308.....734.......4906......13170.........82526........239992 %C A232335 .1...110....1282....3472......38986.....117690.......1274656.......4158066 %C A232335 .1...288....5338...16338.....312276....1047700......20052758......71916112 %C A232335 .1...754...22228...76630....2510674....9298730.....318521414....1241196022 %C A232335 .1..1974...92562..358656...20221026...82332898....5084744564...21383016966 %C A232335 .1..5168..385450.1676330..162993780..727588212...81376107850..367791626696 %C A232335 .1.13530.1605108.7828014.1314329242.6419787202.1303994749578.6317140944234 %H A232335 R. H. Hardin, <a href="/A232335/b232335.txt">Table of n, a(n) for n = 1..448</a> %F A232335 Empirical for column k: %F A232335 k=1: a(n) = a(n-1) %F A232335 k=2: a(n) = 3*a(n-1) -a(n-2) %F A232335 k=3: a(n) = 5*a(n-1) -3*a(n-2) -2*a(n-3) %F A232335 k=4: a(n) = 7*a(n-1) -9*a(n-2) -8*a(n-3) -4*a(n-4) %F A232335 k=5: a(n) = 11*a(n-1) -21*a(n-2) -20*a(n-3) -12*a(n-4) for n>5 %F A232335 k=6: [order 7] for n>9 %F A232335 k=7: [order 16] for n>18 %F A232335 Empirical for row n: %F A232335 n=1: a(n) = a(n-1) +a(n-2) for n>3 %F A232335 n=2: a(n) = a(n-1) +3*a(n-2) -a(n-3) +a(n-4) -a(n-5) for n>6 %F A232335 n=3: [order 8] for n>12 %F A232335 n=4: [order 21] for n>24 %F A232335 n=5: [order 36] for n>42 %F A232335 n=6: [order 80] for n>87 %e A232335 Some solutions for n=5 k=4 %e A232335 ..2..1..0..1....2..1..2..1....2..1..0..2....1..2..0..2....2..1..0..1 %e A232335 ..0..1..2..0....0..1..2..0....0..2..1..0....0..1..0..1....2..1..2..1 %e A232335 ..2..0..1..0....2..0..1..0....1..2..1..0....2..1..2..1....2..1..0..2 %e A232335 ..1..2..1..2....1..2..1..2....1..2..1..0....0..1..0..2....0..2..1..2 %e A232335 ..1..0..1..0....1..2..1..0....1..0..2..1....2..1..0..2....1..0..1..2 %Y A232335 Column 2 is A025169(n-1) %Y A232335 Column 3 is A218059 %Y A232335 Row 1 is A006355(n+1) %K A232335 nonn,tabl %O A232335 1,2 %A A232335 _R. H. Hardin_, Nov 22 2013