cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A232330 Number of n X n 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

1, 6, 74, 734, 38986, 1047700, 318521414, 21383016966, 41587044818288, 6504751614236146, 87397564422467956534, 30467813258936981061662, 2950963661663407494064125726, 2230955943109246024221388092190
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Diagonal of A232335

Examples

			Some solutions for n=5
..1..2..0..1..2....0..1..2..1..0....2..1..0..2..1....0..1..2..1..0
..0..1..2..1..0....0..1..0..2..0....2..1..0..2..0....2..1..2..1..2
..0..1..2..1..0....0..2..0..1..0....2..1..0..1..2....0..1..0..1..2
..0..1..2..1..2....0..1..2..1..0....2..1..2..1..2....2..1..2..1..0
..2..1..2..1..2....2..1..0..2..1....0..1..2..1..0....0..1..0..2..1
		

A232331 Number of nX4 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

6, 32, 154, 734, 3472, 16338, 76630, 358656, 1676330, 7828014, 36533360, 170436130, 794923238, 3706958560, 17284778298, 80589690622, 375729468240, 1751693001458, 8166429157878, 38071572583616, 177486683779786, 827424427937102
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Column 4 of A232335

Examples

			Some solutions for n=7
..0..1..2..1....2..1..2..1....0..1..0..2....2..1..2..1....2..1..0..2
..2..1..0..2....0..1..0..2....2..1..0..2....0..1..2..1....2..1..0..1
..2..1..0..2....0..1..0..1....0..2..1..0....0..1..2..1....2..1..2..1
..2..1..0..2....2..1..2..1....1..0..1..0....0..1..0..2....0..1..0..2
..0..1..0..2....0..1..0..2....1..2..1..2....0..2..0..2....0..2..1..2
..2..1..0..2....0..2..1..0....1..2..1..0....0..1..0..1....1..0..1..0
..0..2..1..0....1..2..1..0....1..0..2..1....2..1..2..1....2..0..2..1
		

Formula

Empirical: a(n) = 7*a(n-1) -9*a(n-2) -8*a(n-3) -4*a(n-4).
Empirical: G.f.: -2*x*(-3+5*x+8*x^2+4*x^3) / ( 1-7*x+9*x^2+8*x^3+4*x^4 ). - R. J. Mathar, Nov 24 2013

A232332 Number of n X 5 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

10, 82, 628, 4906, 38986, 312276, 2510674, 20221026, 162993780, 1314329242, 10600203674, 85498798420, 689639995266, 5562789156722, 44871062410868, 361944328742026, 2919563842456426, 23550196645340116, 189963983083385394
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Examples

			Some solutions for n=6:
..0..1..2..1..0....0..1..2..1..2....0..1..2..1..0....0..1..2..1..0
..2..1..0..1..2....0..1..2..1..2....0..1..2..1..2....2..1..2..1..2
..2..1..2..1..0....0..1..2..1..2....0..1..0..1..0....0..1..2..1..0
..0..1..2..1..0....2..1..0..1..0....2..1..2..1..0....0..1..0..1..2
..0..1..2..1..0....2..1..2..1..0....0..1..0..1..2....0..1..2..1..0
..0..1..0..1..2....0..1..0..1..2....2..1..0..1..0....0..1..0..2..1
		

Crossrefs

Column 5 of A232335.

Formula

Empirical: a(n) = 11*a(n-1) - 21*a(n-2) - 20*a(n-3) - 12*a(n-4) for n>5.
Empirical g.f.: 2*x*(5 - 14*x - 32*x^2 - 40*x^3 - 16*x^4) / (1 - 11*x + 21*x^2 + 20*x^3 + 12*x^4). - Colin Barker, Oct 04 2018

A232333 Number of n X 6 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

16, 162, 1470, 13170, 117690, 1047700, 9298730, 82332898, 727588212, 6419787202, 56572605706, 498017769108, 4380455260922, 38503151114834, 338244048166260, 2970058795869778, 26069751578988858, 228757355654899732
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..2..0..1..2....2..1..2..0..1..2....2..1..2..1..0..2....2..0..1..2..0..2
..2..0..1..2..1..2....2..0..1..2..1..2....2..1..0..1..0..2....1..2..0..1..0..2
..1..2..1..2..0..1....1..2..1..0..1..2....0..1..2..1..0..1....0..1..2..1..0..2
..1..2..0..1..2..1....1..2..1..0..1..0....0..1..0..1..2..1....2..1..2..1..0..2
		

Crossrefs

Column 6 of A232335.

Formula

Empirical: a(n) = 16*a(n-1) -60*a(n-2) -47*a(n-3) +92*a(n-4) +448*a(n-5) +448*a(n-6) +256*a(n-7) for n>9.
Empirical g.f.: 2*x*(8 - 47*x - 81*x^2 + 61*x^3 + 656*x^4 + 939*x^5 + 468*x^6 - 112*x^7 - 64*x^8) / (1 - 16*x + 60*x^2 + 47*x^3 - 92*x^4 - 448*x^5 - 448*x^6 - 256*x^7). - Colin Barker, Oct 04 2018

A232334 Number of nX7 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

26, 388, 5530, 82526, 1274656, 20052758, 318521414, 5084744564, 81376107850, 1303994749578, 20908870281768, 335369094519602, 5380024352555430, 86313698646851076, 1384816751017368294, 22218432354426792578
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Column 7 of A232335

Examples

			Some solutions for n=4
..2..1..0..2..0..1..2....2..1..2..0..1..2..1....1..2..0..1..0..1..2
..2..1..0..1..0..1..2....2..0..1..2..1..2..0....0..1..2..1..0..1..2
..2..1..2..1..0..1..0....1..2..1..2..0..1..2....0..1..2..1..2..0..1
..0..1..2..1..0..1..2....1..0..1..2..0..1..0....2..1..2..0..1..2..1
		

Formula

Empirical: a(n) = 25*a(n-1) -144*a(n-2) -39*a(n-3) +579*a(n-4) +2066*a(n-5) +138*a(n-6) -5848*a(n-7) -13546*a(n-8) -13582*a(n-9) -7801*a(n-10) -927*a(n-11) +968*a(n-12) +737*a(n-13) +11*a(n-14) +8*a(n-15) -20*a(n-16) for n>18

A232336 Number of 2 X n 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

1, 6, 18, 32, 82, 162, 388, 806, 1858, 3968, 8962, 19426, 43396, 94822, 210578, 462112, 1022994, 2250178, 4972804, 10951878, 24180994, 53291008, 117604738, 259275842, 572028164, 1261360966, 2782483346, 6136209184, 13535050578, 29850527586
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Examples

			Some solutions for n=7:
..2..0..1..0..2..1..0....2..1..2..1..0..2..1....1..2..1..0..2..0..1
..1..2..1..0..2..1..2....2..1..2..1..0..2..1....1..2..1..0..1..2..1
		

Crossrefs

Row 2 of A232335.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) - a(n-3) + a(n-4) - a(n-5) for n>6.
Empirical g.f.: x*(1 + 5*x + 9*x^2 - 3*x^3 + x^4 - 3*x^5) / ((1 + x - x^2)*(1 - 2*x - x^3)). - Colin Barker, Oct 04 2018

A232337 Number of 3 X n 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

1, 16, 74, 154, 628, 1470, 5530, 13906, 49150, 130108, 439834, 1208138, 3956136, 11159566, 35718398, 102702256, 323381538, 942724706, 2933702600, 8637532046, 26653534886, 79035941608, 242412919890, 722524675274, 2206433888880
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Examples

			Some solutions for n=7.
..0..1..2..1..0..1..0....1..2..1..2..1..2..1....0..1..2..1..2..1..0
..0..1..2..1..2..1..2....1..2..1..0..1..2..1....0..1..2..1..2..1..2
..0..1..0..1..0..1..2....1..2..1..0..1..0..2....0..1..2..1..0..1..2
		

Crossrefs

Row 3 of A232335.

Formula

Empirical: a(n) = a(n-1) + 7*a(n-2) - 3*a(n-3) + 3*a(n-4) - 7*a(n-5) + 2*a(n-6) - 2*a(n-7) + 2*a(n-8) for n>12.
Empirical g.f.: x*(1 + 15*x + 51*x^2 - 29*x^3 + x^4 - 55*x^5 + 14*x^6 - 4*x^7 + 20*x^8 - 2*x^10 - 2*x^11) / (1 - x - 7*x^2 + 3*x^3 - 3*x^4 + 7*x^5 - 2*x^6 + 2*x^7 - 2*x^8). - Colin Barker, Oct 05 2018

A232338 Number of 4Xn 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

1, 42, 308, 734, 4906, 13170, 82526, 239992, 1398710, 4333362, 23808020, 77703762, 406751730, 1385692672, 6971295054, 24603895150, 119805137680, 435349233940, 2063663956954, 7681867046626, 35616414149972, 135245995065394
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Row 4 of A232335

Examples

			Some solutions for n=7
..0..1..2..1..0..1..2....1..2..0..1..0..1..2....0..1..0..1..2..1..0
..2..1..2..1..2..1..2....0..1..2..1..2..1..0....2..1..0..1..0..2..0
..0..1..2..1..2..1..0....2..1..0..1..2..1..2....0..1..2..1..0..1..2
..0..1..0..1..0..1..2....0..2..0..1..2..1..2....2..1..0..1..2..1..2
		

Formula

Empirical: a(n) = a(n-1) +15*a(n-2) -7*a(n-3) +8*a(n-4) -40*a(n-5) +8*a(n-6) -14*a(n-7) +38*a(n-8) +12*a(n-9) +3*a(n-10) -11*a(n-11) -27*a(n-12) +7*a(n-13) -6*a(n-14) +20*a(n-15) -5*a(n-16) +5*a(n-17) -7*a(n-18) +a(n-19) -a(n-20) +a(n-21) for n>24

A232339 Number of 5Xn 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

1, 110, 1282, 3472, 38986, 117690, 1274656, 4158066, 42080048, 146531864, 1393415694, 5138181574, 46239884144, 179337779938, 1537326888338, 6234688975144, 51199303984118, 216023027477120, 1707858843212112
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Row 5 of A232335

Examples

			Some solutions for n=5
..0..1..0..1..0....2..1..2..1..2....0..1..2..1..0....1..2..0..1..2
..2..1..2..1..2....2..1..0..1..0....2..1..2..1..2....0..1..2..0..2
..0..1..0..1..0....0..2..0..1..0....2..1..2..1..0....2..0..1..0..1
..0..1..2..1..2....0..1..2..1..0....2..1..0..1..2....1..2..1..2..1
..0..1..2..1..2....2..1..2..1..2....2..1..0..1..2....1..2..1..0..2
		

Formula

Empirical: a(n) = a(n-1) +32*a(n-2) -17*a(n-3) -3*a(n-4) -162*a(n-5) -178*a(n-6) +240*a(n-7) -47*a(n-8) +1633*a(n-9) -1527*a(n-10) +1816*a(n-11) -5806*a(n-12) +4608*a(n-13) -5834*a(n-14) +12194*a(n-15) -8388*a(n-16) +10308*a(n-17) -17052*a(n-18) +9996*a(n-19) -11795*a(n-20) +16635*a(n-21) -7989*a(n-22) +9086*a(n-23) -11378*a(n-24) +4230*a(n-25) -4661*a(n-26) +5307*a(n-27) -1415*a(n-28) +1514*a(n-29) -1589*a(n-30) +269*a(n-31) -279*a(n-32) +272*a(n-33) -22*a(n-34) +22*a(n-35) -20*a(n-36) for n>42

A232340 Number of 6Xn 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

1, 288, 5338, 16338, 312276, 1047700, 20052758, 71916112, 1303776080, 4965633966, 85069249698, 342465661280, 5558842468148, 23543239967730, 363597929464136, 1613453348902866, 23803367852101370, 110263048814908764
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Row 6 of A232335

Examples

			Some solutions for n=5
..0..1..0..2..0....0..1..0..1..2....0..1..2..1..0....0..1..2..1..0
..2..1..0..1..2....2..1..0..1..2....0..1..0..2..0....0..1..2..1..0
..2..1..2..1..2....0..1..2..1..0....2..1..0..1..2....0..1..2..1..0
..0..1..2..1..0....2..1..2..1..0....2..1..2..1..0....0..1..2..1..2
..2..1..2..1..2....0..1..2..1..2....0..1..0..2..0....2..1..2..1..2
..0..1..2..1..2....0..1..0..1..0....2..1..0..1..2....0..1..2..1..0
		

Formula

Empirical recurrence of order 80 (see link above)
Showing 1-10 of 11 results. Next