A232370 Number of n X 2 0..3 arrays with every 0 next to a 1, every 1 next to a 2 and every 2 next to a 3 horizontally, diagonally or antidiagonally, and no adjacent values equal.
2, 14, 58, 230, 934, 3794, 15354, 62266, 252346, 1022806, 4145638, 16802922, 68105158, 276041834, 1118844570, 4534868126, 18380594246, 74499685134, 301959937342, 1223895154962, 4960655920226, 20106384977054, 81494609451994
Offset: 1
Keywords
Examples
Some solutions for n=7: ..2..1....0..3....3..2....3..0....3..0....2..3....3..0....1..0....3..2....3..1 ..0..3....2..1....1..2....1..2....1..0....0..1....1..0....1..2....1..0....2..1 ..0..3....0..1....1..0....3..2....3..2....0..3....1..2....3..2....1..2....2..3 ..2..1....2..1....3..0....1..2....1..2....2..3....3..0....3..2....3..2....2..3 ..3..1....2..3....2..1....0..3....0..3....0..1....3..2....1..2....3..1....0..1 ..0..2....2..1....2..3....0..1....2..1....3..2....1..0....3..0....2..1....0..1 ..3..2....0..1....2..3....2..3....3..1....3..2....3..0....1..2....0..3....2..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A232376.
Formula
Empirical: a(n) = 2*a(n-1) + 7*a(n-2) + 6*a(n-3) - 2*a(n-4) - 3*a(n-5) + 2*a(n-6) + a(n-7).
Empirical g.f.: 2*x*(1 + 5*x + 8*x^2 + 2*x^3 - 6*x^4 + x^5 + x^6) / ((1 + x)*(1 - 3*x - 4*x^2 - 2*x^3 + 4*x^4 - x^5 - x^6)). - Colin Barker, Oct 05 2018