cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232376 T(n,k)=Number of nXk 0..3 arrays with every 0 next to a 1, every 1 next to a 2 and every 2 next to a 3 horizontally, diagonally or antidiagonally, and no adjacent values equal.

Original entry on oeis.org

1, 2, 1, 4, 14, 1, 8, 74, 58, 1, 14, 296, 586, 230, 1, 26, 1130, 4404, 4550, 934, 1, 48, 4682, 32722, 63744, 36574, 3794, 1, 88, 19448, 259458, 927706, 957232, 292122, 15354, 1, 162, 79592, 2046700, 14326374, 27133338, 14297980, 2324142, 62266, 1, 298, 326810
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2013

Keywords

Comments

Table starts
.1.......2..........4............8..............14.................26
.1......14.........74..........296............1130...............4682
.1......58........586.........4404...........32722.............259458
.1.....230.......4550........63744..........927706...........14326374
.1.....934......36574.......957232........27133338..........825606450
.1....3794.....292122.....14297980.......789866870........47301712998
.1...15354....2324142....213082596.....22946925502......2706080691402
.1...62266...18574882...3180405572....667514680522....154987416800398
.1..252346..148225606..47457708756..19413840326186...8875595994390694
.1.1022806.1182879814.708101568772.564595278464614.508249649361525870

Examples

			Some solutions for n=4 k=4
..0..1..2..1....2..1..2..1....2..3..2..3....2..1..0..3....3..2..0..2
..0..3..0..1....0..3..2..1....1..0..1..0....2..3..0..3....3..1..3..2
..2..1..0..3....2..3..2..1....1..2..3..0....2..3..0..3....2..1..0..1
..3..1..2..3....2..3..2..3....1..2..1..2....0..1..2..1....0..3..2..3
		

Crossrefs

Row 1 is A135491(n-1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +7*a(n-2) +6*a(n-3) -2*a(n-4) -3*a(n-5) +2*a(n-6) +a(n-7)
k=3: [order 15]
k=4: [order 22]
k=5: [order 64]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +a(n-3) for n>4
n=2: [order 8] for n>9
n=3: [order 13] for n>14
n=4: [order 60] for n>61