cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232434 Limit of rows in triangle A232433 when read in reverse order.

This page as a plain text file.
%I A232434 #24 Jul 20 2019 21:03:28
%S A232434 1,2,6,14,32,68,142,276,542,1022,1876,3394,6066,10628,18412,31344,
%T A232434 52868,88370,146180,239310,388370,624688,997586,1582640,2493908,
%U A232434 3902574,6069194,9378078,14411150,22034860,33520642,50747992,76471200,114689926,171242092,254587046,376981800,556129468,817412048,1197096472,1747047580
%N A232434 Limit of rows in triangle A232433 when read in reverse order.
%C A232434 Conjecture: a(n) equals sum of f(lambda) over all partitions of n, where f is defined recursively as f({})=1; f(lambda)=binomial(i+j,j) f(mu)f(nu); with i and j the row and column of the box in the Young-Ferrers diagram of lambda such that i+j is maximized, and mu is lambda with the first i rows removed, and nu is lambda with the first j columns removed. See Math Overflow link. - _Wouter Meeussen_, Apr 07 2014
%H A232434 Matt Fayers, <a href="http://mathoverflow.net/questions/132338">A function from partitions to natural numbers - is it familiar?</a>, MathOverflow 30 may 2013. [From Wouter Meeussen, Apr 07 2014]
%F A232434 E.g.f. of triangle A232433 satisfies: G(x,q) = exp(Integral G(x,q)*G(q*x,q) dx).
%e A232434 The triangle A232433 of coefficients of x^n*q^k, n >= 0, k = 0..n*(n-1)/2, begins:
%e A232434 [1];
%e A232434 [1];
%e A232434 [2, 1];
%e A232434 [6, 6, 2, 1];
%e A232434 [24, 36, 22, 14, 6, 2, 1];
%e A232434 [120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1];
%e A232434 [720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1]; ...
%e A232434 where this sequence is the limit of the rows read in reverse order.
%t A232434 Clear[c]; c[0] = 1; Table[f = Sum[c[k] x^k/k!, {k, 0, n}];
%t A232434 c[n + 1] = n! SeriesCoefficient[f^2 (f /. x -> q x), {x, 0, n}] // Simplify;  Coefficient[q*c[n + 1], q^(1 + n*(n - 1)/2)], {n, 0, 64}]
%t A232434 (* or via combinatorics: *)
%t A232434 Clear[f];f[{}]:=1;f[\[Lambda]_?PartitionQ]:=f[\[Lambda]]=Block[{temp,i,j,\[Mu],\[Nu]},temp=\[Lambda]+Range[Length[\[Lambda]]];{i}=First@Position[temp,Max[temp],1,1];j=\[Lambda][[i]];\[Mu]=Drop[\[Lambda],i];\[Nu]=DeleteCases[\[Lambda]-j,q_/;(q<=0)];Binomial[i+j,j]f[\[Mu]]f[\[Nu]]];
%t A232434 Table[Total[f/@IntegerPartitions[n]],{n,0,24}] (* _Wouter Meeussen_, Apr 07 2014 *)
%o A232434 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=exp(intformal(A*subst(A,x,x*y +x*O(x^n)),x)));n!*polcoeff(polcoeff(A,n,x),(n-1)*(n-2)/2,y)}
%o A232434 for(n=1,20,print1(a(n),", "))
%Y A232434 Cf. A232433.
%K A232434 nonn
%O A232434 1,2
%A A232434 _Paul D. Hanna_, Nov 23 2013