cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232441 Sequence read from antidiagonals of rectangular array given by A(n,k) = 2^(2*k)*(Sum_{j=1..n-floor(n/2)-1} (cos(j*Pi/n))^(2*k)), rows n >= 3, columns k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 3, 4, 1, 3, 4, 7, 8, 1, 3, 5, 10, 18, 16, 1, 4, 6, 13, 28, 47, 32, 1, 4, 7, 16, 38, 82, 123, 64, 1, 5, 8, 19, 48, 117, 244, 322, 128, 1, 5, 9, 22, 58, 152, 370, 730, 843, 256, 1, 6, 10, 25, 68
Offset: 3

Views

Author

L. Edson Jeffery, Nov 23 2013

Keywords

Comments

Row indices n begin with 3, column indices k begin with 0.

Examples

			1,    1,    1,    1,    1,    1,    1,    1,    1,    1,    1,...
1,    2,    4,    8,   16,   32,   64,  128,  256,  512, 1024,...
2,    3,    7,   18,   47,  123,  322,  843, 2207, 5778,15127,...
2,    4,   10,   28,   82,  244,  730, 2188, 6562,19684,59050,...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[m, FullSimplify[2^(2 k)*Sum[Cos[j*Pi/m]^(2 k), {j, m - Floor[m/2] - 1}]]][n - k + 1], {n, 3, 12}, {k, 0, n - 2}] // Flatten (* Michael De Vlieger, Mar 18 2017 *)

Formula

A(2*m+1,k) = A186740(m,k), m = 1,2,....
Conjecture: A(n,k) = floor(A198632(n-1,k)/2), n >= 3, k >= 0.