cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232442 a(n) = |{0 < k < n: m*prime(m) - 1 and m*prime(m) + 1 are both prime with m = sigma(k) + phi(n-k)}|, where sigma(k) is the sum of all positive divisors of k and phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 6, 1, 2, 2, 0, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 4, 1, 1, 0, 1, 2, 2, 2, 4, 0, 0, 1, 2, 0, 3, 3, 3, 2, 0, 1, 1, 2, 1, 2, 0, 1, 1, 14, 3, 2, 2, 2, 2, 3, 4, 5, 3, 2, 3, 1, 3, 3, 4, 6, 3, 0, 5, 3, 1, 0, 5, 2, 0, 3, 6, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 14 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 214.
This implies that there are infinitely many twin prime pairs of the special form {m*prime(m) - 1, m*prime(m) + 1}.
We have verified the conjecture for n up to 10^5.

Examples

			a(25) = 1 since sigma(6) + phi(19) = 12 + 18 = 30 with {30*prime(30) - 1, 30*prime(30) + 1} = {3389, 3391} a twin prime pair.
a(100) = 1 since sigma(75) + phi(25) = 124 + 20 = 144 with {144*prime(144) - 1, 144*prime(144) + 1} = {119087, 119089} a twin prime pair.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=DivisorSigma[1,n]
    q[n_]:=PrimeQ[n*Prime[n]-1]&&PrimeQ[n*Prime[n]+1]
    f[n_,k_]:=sigma[k]+EulerPhi[n-k]
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]