This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232461 #17 Feb 19 2019 18:18:41 %S A232461 120,168,300,360,1920,2016,2688,4680,4800,5760,9720,10140,13608,14280, %T A232461 18720,19080,23256,24300,29160,30720,32760,34440,34680,38640,42120, %U A232461 43008,57720,74880,75000,76800,92160,94080,105000,128700,162240,177072,187500,217728 %N A232461 Integer areas of integer-sided triangles where two sides are of square length. %C A232461 Subset of A188158. %C A232461 The areas of the triangles (a,b,c) are given by Heron's formula, A = sqrt(s(s-a)(s-b)(s-c)), where its side lengths are a, b, c and semiperimeter s = (a+b+c)/2. %C A232461 The areas A of the primitive triangles of sides (a,b,c) are 120, 168, 300, 360, 4680, ... %C A232461 The areas of the nonprimitive triangle of sides (a*p^2, b*p^2, c*p^2) are in the sequence with the value A*p^4. %C A232461 It is possible to find integer-sided triangles having two square sides, for example: %C A232461 a(2) = 168 with sides (25,25,48) and (14,25,25); %C A232461 a(3) = 300 with sides (25,25,30) and (25,25,40); %C A232461 a(14) = 14280 with sides (169,169,238), (169,169,240), (100,289,291). %C A232461 The following table gives the first values (A, a, b, c): %C A232461 +-------+-----+-----+-----+ %C A232461 | A | a | b | c | %C A232461 +-------+-----+-----+-----+ %C A232461 | 120 | 16 | 25 | 39 | %C A232461 | 168 | 14 | 25 | 25 | %C A232461 | 300 | 25 | 25 | 40 | %C A232461 | 360 | 25 | 29 | 36 | %C A232461 | 1920 | 64 | 100 | 156 | %C A232461 | 2016 | 64 | 225 | 287 | %C A232461 | 2688 | 100 | 100 | 192 | %C A232461 | 4680 | 74 | 169 | 225 | %C A232461 | 4800 | 100 | 100 | 160 | %C A232461 | 5760 | 100 | 116 | 144 | %C A232461 | 9720 | 144 | 225 | 351 | %C A232461 | 10140 | 169 | 169 | 312 | %C A232461 | 13608 | 225 | 225 | 432 | %C A232461 +-------+-----+-----+-----+ %H A232461 J. Peng, Y. Zhang, <a href="https://doi.org/10.1007/s10474-018-00907-0">Heron triangles with figurate number sides</a>, Acta Mathematica Hungarica (2019) 1-11. %e A232461 120 is in the sequence because the triangle (4^2, 5^2, 39) has semiperimeter s = (16+25+39)/2 = 40, and A = sqrt(40*(40-16)*(40-25)*(40-39)) = 120. %t A232461 nn=1000;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a) (s-b) (s-c);If[0<area2&&((IntegerQ[Sqrt[a]]&&IntegerQ[Sqrt[b]])||(IntegerQ[Sqrt[a]]&&IntegerQ[Sqrt[c]])||(IntegerQ[Sqrt[b]]&&IntegerQ[Sqrt[c]]))&&IntegerQ[Sqrt[area2]],AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst] %t A232461 sqr[n_]:=n^2; area[a_, b_, c_] := Module[{s = (a + b + c)/2, a2}, a2 = s (s - a) (s - b) (s - c); If[a2 < 0, 0, Sqrt[a2]]]; goodQ[a_, b_, c_] := Module[{ar = area[a, b, c]}, ar > 0 && IntegerQ[ar]]; nn = 80; t = {}; ps = sqr[Range[2, nn]]; mx = 3*ps[[-1]]; Do[If[p <= q && goodQ[p, q, e], aa = area[p, q, e]; If[aa <= mx, AppendTo[t, aa]]], {p, ps}, {q, ps}, {e, q - p + 2, p + q - 2, 2}]; t = Union[t] (* program from _T. D. Noe_ adapted for this sequence - see A229746 *) %Y A232461 Cf. A000290, A188158. %K A232461 nonn %O A232461 1,1 %A A232461 _Michel Lagneau_, Nov 24 2013