This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232474 #31 Sep 13 2024 16:27:38 %S A232474 24,216,2184,24696,310344,4304376,65444424,1083832056,19437971784, %T A232474 375544415736,7779464328264,172062025581816,4047849158698824, %U A232474 100946105980181496,2660400563437957704,73890563849015945976,2157336929022064219464,66059202473570840113656,2116993226046938197020744 %N A232474 4-Fubini numbers. %H A232474 Vincenzo Librandi, <a href="/A232474/b232474.txt">Table of n, a(n) for n = 4..200</a> %H A232474 Andrei Z. Broder, <a href="http://dx.doi.org/10.1016/0012-365X(84)90161-4">The r-Stirling numbers</a>, Discrete Math. 49, 241-259 (1984). %H A232474 I. Mezo, <a href="http://arxiv.org/abs/1308.1637">Periodicity of the last digits of some combinatorial sequences</a>, arXiv preprint arXiv:1308.1637 [math.CO], 2013. %H A232474 Benjamin Schreyer, <a href="https://arxiv.org/abs/2409.03799">Rigged Horse Numbers and their Modular Periodicity</a>, arXiv:2409.03799 [math.CO], 2024. See p. 12. %F A232474 From _Peter Bala_, Dec 16 2020: (Start) %F A232474 a(n+4) = Sum_{k = 0..n} (k+4)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+4)^n ). %F A232474 a(n+4) = Sum_{k = 0..n} 4^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+4)! ). %F A232474 E.g.f. with offset 0: 24*exp(4*z)/(2 - exp(z))^5 = 24 + 216*z + 2184*z^2/2! + 24696*z^3/3! + .... (End) %F A232474 a(n) ~ n! / (2 * log(2)^(n+1)). - _Vaclav Kotesovec_, Dec 17 2020 %p A232474 # r-Stirling numbers of second kind (e.g. A008277, A143494, A143495): %p A232474 T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r): %p A232474 # r-Bell numbers (e.g. A000110, A005493, A005494): %p A232474 B := (n,r) -> add(T(n,k,r),k=r..n); %p A232474 SB := r -> [seq(B(n,r),n=r..30)]; %p A232474 SB(2); %p A232474 # r-Fubini numbers (e.g. A000670, A232472, A232473, A232474): %p A232474 F := (n,r) -> add((k)!*T(n,k,r),k=r..n); %p A232474 SF := r -> [seq(F(n,r),n=r..30)]; %p A232474 SF(4); %t A232474 Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 4], {n, 4, 22}] (* _Jean-François Alcover_, Mar 30 2016 *) %o A232474 (Magma) r:=4; r_Fubini:=func<n,r | &+[Factorial(k)*&+[(-1)^(k+h+r)*(h+r)^(n-r)/(Factorial(h)*Factorial(k-h-r)): h in [0..k-r]]: k in [r..n]]>; %o A232474 [r_Fubini(n, r): n in [r..22]]; // _Bruno Berselli_, Mar 30 2016 %Y A232474 Cf. A008277, A143494, A143495, A000110, A005493, A005494, A000670, A232472, A232473, A232474. %K A232474 nonn,easy %O A232474 4,1 %A A232474 _N. J. A. Sloane_, Nov 27 2013