This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232497 #27 Jan 27 2025 10:36:39 %S A232497 1,0,2,6,14,32,102,238,652,1696,4480,11658,30870,80644,212292,556858, %T A232497 1463390,3840686,10090218,26490280,69575414,182693434,479789138, %U A232497 1259906496,3308668718,8688615148,22817011182,59918425698,157349755400,413208421354,1085110433096 %N A232497 Number of tilings of a 4 X n rectangle using L and Z tetrominoes. %H A232497 Alois P. Heinz, <a href="/A232497/b232497.txt">Table of n, a(n) for n = 0..1000</a> %H A232497 Nicolas Bělohoubek and Antonín Slavík, <a href="https://msekce.karlin.mff.cuni.cz/~slavik/papers/L-tetromino-tilings.pdf">L-Tetromino Tilings and Two-Color Integer Compositions</a>, Univ. Karlova (Czechia, 2025). See p. 10. %H A232497 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetromino">Tetromino</a> %H A232497 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,5,7,2,-13,-13,-6,-6,0,-4,0,-2). %F A232497 G.f.: -(x^6-x^5-2*x^4+x^3+3*x^2-1) / (2*x^12 +4*x^10 +6*x^8 +6*x^7 +13*x^6 +13*x^5 -2*x^4 -7*x^3 -5*x^2+1). %e A232497 a(3) = 6: %e A232497 ._._._. ._._._. ._._._. ._._._. ._._._. ._._._. %e A232497 | .___| |___. | | |_. | | ._| | | .___| |___. | %e A232497 |_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_| %e A232497 |___| | | |___| | |_|_| |_|_| | | ._| | | |_. | %e A232497 |_____| |_____| |_____| |_____| |_|___| |___|_|. %p A232497 a:= n-> coeff(series(-(x^6-x^5-2*x^4+x^3+3*x^2-1)/ %p A232497 (2*x^12+4*x^10+6*x^8+6*x^7+13*x^6+13*x^5-2*x^4-7*x^3-5*x^2+1), %p A232497 x, n+1), x, n); %p A232497 seq(a(n), n=0..40); %Y A232497 Cf. A084480, A174248, A226322, A233139, A233191, A233266. %K A232497 nonn,easy %O A232497 0,3 %A A232497 _Alois P. Heinz_, Nov 24 2013