A232502 Number of ways to write n = k + m (0 < k < m) with 2*prime(m) - prime(k) prime.
0, 0, 0, 0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 2, 3, 1, 5, 2, 3, 1, 4, 5, 3, 4, 2, 3, 2, 3, 5, 5, 3, 7, 1, 5, 4, 8, 3, 4, 5, 6, 5, 1, 6, 4, 9, 3, 8, 4, 6, 3, 10, 5, 8, 4, 8, 3, 9, 6, 4, 4, 4, 10, 6, 10, 4, 11, 5, 11, 6, 9, 5, 10, 9, 8, 6, 9, 7, 9, 11, 9, 11, 5, 10, 9, 12, 6, 6, 10, 9, 8, 13, 4, 12, 10, 12, 8, 7, 12, 14
Offset: 1
Keywords
Examples
a(17) = 1 since 2*prime(10) - prime(7) = 2*29 - 17 = 41 is prime. a(21) = 1 since 2*prime(19) - prime(2) = 2*67 - 3 = 131 is prime. a(34) = 1 since 2*prime(24) - prime(10) = 2*89 - 29 = 149 is prime. a(43) = 1 since 2*prime(28) - prime(15) = 2*107 - 47 = 167 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167(2008), 481-547.
- J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), 1-50.
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[2*Prime[n-k]-Prime[k]],1,0],{k,1,(n-1)/2}] Table[a[n],{n,1,100}]
Comments