A232539 Triangle read by rows: T(n,k) = number of partitions of n into at most four parts in which the largest part is equal to k, 0 <= k <= n.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 0, 3, 4, 4, 3, 2, 1, 1, 0, 0, 0, 2, 5, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 7, 5, 4, 3, 2, 1, 1
Offset: 0
Examples
Triangle T{n,k} begins: 1; 0, 1; 0, 1, 1; 0, 1, 1, 1; 0, 1, 2, 1, 1; 0, 0, 2, 2, 1, 1; 0, 0, 2, 3, 2, 1, 1; 0, 0, 1, 3, 3, 2, 1, 1; 0, 0, 1, 3, 4, 3, 2, 1, 1; 0, 0, 0, 3, 4, 4, 3, 2, 1, 1; ...
Links
- Louis Comtet, Advanced Combinatorics, Reidel (1974).
Crossrefs
Programs
-
Maple
maxp := 4 : gf := 1/mul(1-u*t^i,i=1..maxp) : for n from 0 to 13 do for m from 0 to n do coeftayl(gf,t=0,n) ; coeftayl(%,u=0,m) ; printf("%d ",%); end do: printf("\n") ; end do: # R. J. Mathar, May 27 2025
Formula
G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)*(1-u*t^4)). - [Comtet p. 97 [2c]]. - R. J. Mathar, May 27 2025
Comments