This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232541 #40 Jan 15 2022 15:15:30 %S A232541 4,6,8,9,95,159,195,249,326,762,973,995,998,1057,1086,1111,1189,1236, %T A232541 1255,1337,1338,1383,1389,1395,1419,1509,2139,2248,2623,2679,2737, %U A232541 2928,2949,3029,3065,3202,3344,3345,3419,3432,3437,3464,3706,3945,4344,4502 %N A232541 Multiplicative Smith numbers: Composite numbers n such that the product of nonzero digits of n = product of nonzero digits of prime factors of n. %C A232541 They follow the same formula for Smith numbers, however, instead of addition, we have multiplication (only nonzero digits are included). %C A232541 Trivially, prime numbers satisfy this property but are not included in the sequence. %H A232541 T. D. Noe, <a href="/A232541/b232541.txt">Table of n, a(n) for n = 1..1000</a> %e A232541 1236 is a member of this sequence because 1236 = 2*2*3*103 and 1*2*3*6 = 2*2*3*1*3 (zeros are not included). %e A232541 998 is a member of this sequence because 998 = 2*499 and 9*9*8 = 2*4*9*9. %t A232541 f[n_] := Times @@ DeleteCases[IntegerDigits[n], 0]; pFactors[n_] := Module[{f = FactorInteger[n]}, Flatten[ConstantArray @@@ f]]; Select[Range[2, 10000], ! PrimeQ[#] && f[#] == Times @@ f /@ pFactors[#] &] (* _T. D. Noe_, Nov 28 2013 *) %t A232541 msnQ[n_]:=Times@@(Flatten[IntegerDigits/@Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]]/.(0->1))==Times@@(IntegerDigits[n]/.(0->1)); Select[ Range[ 5000],CompositeQ[#]&&msnQ[#]&] (* _Harvey P. Dale_, Jan 15 2022 *) %o A232541 (Python) %o A232541 import sympy %o A232541 from sympy import isprime %o A232541 from sympy import factorint %o A232541 def DigitProd(x): %o A232541 prod = 1 %o A232541 for i in str(x): %o A232541 if i != '0': %o A232541 prod *= int(i) %o A232541 return prod %o A232541 def f(x): %o A232541 lst = [] %o A232541 for n in range(len(list(factorint(x)))): %o A232541 lst.append(str(list(factorint(x))[n])*list(factorint(x).values())[n]) %o A232541 string = '' %o A232541 for i in lst: %o A232541 string += i %o A232541 prod = 1 %o A232541 for a in string: %o A232541 if a != '0': %o A232541 prod *= int(a) %o A232541 if prod == DigitProd(x): %o A232541 return True %o A232541 x = 4 %o A232541 while x < 10**3: %o A232541 if not isprime(x): %o A232541 if f(x): %o A232541 print(x) %o A232541 x += 1 %o A232541 (Sage) %o A232541 def prodPrimeDig(x): %o A232541 F=factor(x) %o A232541 T=[item for sublist in [[y[0]]*y[1] for y in F] for item in sublist] %o A232541 return prod([prod(filter(lambda a: a!=0,h.digits(base=10))) for h in T]) %o A232541 n=3345 #Change n for more digits %o A232541 [k for k in [1..n] if prod(filter(lambda a: a!=0,k.digits(base=10)))==prodPrimeDig(k) and not(is_prime(k))] # _Tom Edgar_, Nov 26 2013 %Y A232541 Cf. A006753, A051801. %K A232541 nonn,base,easy %O A232541 1,1 %A A232541 _Derek Orr_, Nov 25 2013 %E A232541 Extended by _T. D. Noe_, Nov 28 2013