cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232563 Sequence (or tree) generated by these rules: 1 is in S, and if x is in S, then x + 1 and 4*x are in S, and duplicates are deleted as they occur.

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 16, 12, 9, 32, 6, 20, 17, 64, 13, 48, 10, 36, 33, 128, 7, 24, 21, 80, 18, 68, 65, 256, 14, 52, 49, 192, 11, 40, 37, 144, 34, 132, 129, 512, 28, 25, 96, 22, 84, 81, 320, 19, 72, 69, 272, 66, 260, 257, 1024, 15, 56, 53, 208, 50, 196, 193, 768
Offset: 1

Views

Author

Clark Kimberling, Nov 26 2013

Keywords

Comments

Let S be the set of numbers defined by these rules: 1 is in S, and if x is in S, then x + 1 and 4*x are in S. Then S is the set of all positive integers, which arise in generations. Deleting duplicates as they occur, the generations are given by g(1) = (1), g(2) = (2,4), g(3) = (3,8,5,16), g(4) = (12,9,32,6,20,17,64), etc. Concatenating these gives A232563, a permutation of the positive integers. The number of numbers in g(n) is A001631(n), the n-th tetranacci number. It is helpful to show the results as a tree with the terms of S as nodes and edges from x to x + 1 if x + 1 has not already occurred, and an edge from x to 4*x if 4*x has not already occurred.

Examples

			Each x begets x + 1 and 4*x, but if either has already occurred it is deleted.  Thus, 1 begets 2 and 4; in the next generation, 2 begets 3 and 8, and 4 begets 5 and 16.
		

Crossrefs

Programs

  • Mathematica
    z = 8; g[1] = {1}; g[2] = {2, 4}; g[n_] := Riffle[g[n - 1] + 1, 4 g[n - 1]]; j[2] = Join[g[1], g[2]]; j[n_] := Join[j[n - 1], g[n]]; g1[n_] := DeleteDuplicates[DeleteCases[g[n], Alternatives @@ j[n - 1]]]; g1[1] = g[1]; g1[2] = g[2]; t = Flatten[Table[g1[n], {n, 1, z}]]  (* A232563 *)
    Table[Length[g1[n]], {n, 1, z}]  (* A001631 *)
    t1 = Flatten[Table[Position[t, n], {n, 1, 200}]]  (* A232564 *)