This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232567 #36 Mar 14 2018 03:48:00 %S A232567 0,1,6,17,43,84,159,262,426,635,940,1311,1821,2422,3213,4124,5284, %T A232567 6597,8226,10045,12255,14696,17611,20802,24558,28639,33384,38507, %U A232567 44401,50730,57945,65656,74376,83657,94078,105129,117459,130492,144951,160190,177010 %N A232567 Number of non-equivalent binary n X n matrices with two nonadjacent 1's. %C A232567 Also: Number of non-equivalent ways to place two non-attacking wazirs on an n X n board. %C A232567 Two matrix elements are considered adjacent if the difference of their row indices is 1 and the column indices are equal, or vice versa (von Neumann neighborhood). %C A232567 This sequence counts equivalence classes induced by the dihedral group D_4. If equivalent matrices are distinguished, the number of matrices is A172225(n). %H A232567 Heinrich Ludwig, <a href="/A232567/b232567.txt">Table of n, a(n) for n = 1..1000</a> %H A232567 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1) %F A232567 a(n) = (n^4 + 2*n^2 - 4*n)/16 if n is even; a(n) = (n^4 + 4*n^2 - 8*n + 3)/16 if n is odd. %F A232567 G.f.: x * (1 + x + x^2)*(1 + 3*x - x^2 + x^3) / ((1 + x)^3*(1 - x)^5). - _Bruno Berselli_, Nov 28 2013 %e A232567 There are a(3) = 6 non-equivalent 3 X 3 matrices with two nonadjacent 1's (and no other 1's): %e A232567 [1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0] %e A232567 |0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1| %e A232567 [0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] %o A232567 (PARI) x='x+O('x^99); concat(0, Vec(x*(1+x+x^2)*(1+3*x-x^2+x^3)/((1+x)^3*(1-x)^5))) \\ _Altug Alkan_, Mar 14 2018 %Y A232567 Cf. A232568, A232569, A239576, A201511, A172225. %K A232567 nonn,easy %O A232567 1,3 %A A232567 _Heinrich Ludwig_, Nov 26 2013