This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232568 #33 Feb 10 2024 09:22:30 %S A232568 0,6,40,210,681,1919,4443,9481,18206,33164,56570,92996,146175,223565, %T A232568 330981,479779,678508,943586,1287036,1731654,2293765,3004011,3883935, %U A232568 4973645,6300906,7917064,9857198,12185816,14946491,18218969,22056585,26556551,31783320 %N A232568 Number of non-equivalent binary n X n matrices with three pairwise nonadjacent 1's. %C A232568 Also: Number of non-equivalent ways to place three non-attacking wazirs on an n X n board. %C A232568 Two matrix elements are considered adjacent if the difference of their row indices is 1 and the column indices are equal, or vice versa (von Neumann neighborhood). %C A232568 Counted for this sequence are equivalence classes induced by the dihedral group D_4. If equivalent matrices are being destinguished, the number of matrices is A172226(n). %H A232568 Heinrich Ludwig, <a href="/A232568/b232568.txt">Table of n, a(n) for n = 2..1001</a> %H A232568 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-11,6,14,-14,-6,11,-1,-3,1). %F A232568 a(n) = (n^6 - 15*n^4 + 20*n^3 + 50*n^2 - 116*n + 48)/48 if n is even; a(n) = (n^6 - 15*n^4 + 28*n^3 + 29*n^2 - 76*n - 15)/48 if n is odd. %F A232568 G.f.: x^3*(x^9-4*x^8+x^7+12*x^6+9*x^5-70*x^4-77*x^3-84*x^2-22*x-6) / ((x-1)^7*(x+1)^4). - _Colin Barker_, Dec 06 2013 %F A232568 a(n) = (n^6 - 15n^4 + 28n^3 + 29n^2 - 76n - 15 - ((n+1) mod 2) * (8n^3 - 21n^2 + 40n - 63))/48. - _Wesley Ivan Hurt_, Dec 06 2013 %e A232568 There are a(3) = 6 non-equivalent 3 X 3 matrices with three pairwise nonadjacent 1's (and no other 1's): %e A232568 [1 0 0] [1 0 1] [1 0 0] [1 0 1] [1 0 1] [0 1 0] %e A232568 |0 1 0| |0 0 0| |0 0 1| |0 0 0| |0 1 0| |1 0 1| %e A232568 [0 0 1] [1 0 0] [0 1 0] [0 1 0] [0 0 0] [0 0 0] %p A232568 A232568:=n->(n^6-15*n^4+28*n^3+29*n^2-76*n-15-((n+1) mod 2)*(8*n^3-21*n^2+40*n-63))/48; seq(A232568(n), n=2..50); # _Wesley Ivan Hurt_, Dec 06 2013 %t A232568 Table[(n^6-15n^4+28n^3+29n^2-76n-15-Mod[n+1,2](8n^3-21n^2+40n-63))/48, {n, 2, 50}] (* _Wesley Ivan Hurt_, Dec 06 2013 *) %Y A232568 Cf. A232567, A239576, A232569, A172226. %K A232568 nonn,easy %O A232568 2,2 %A A232568 _Heinrich Ludwig_, Nov 28 2013