A232569 Triangle T(n, k) = number of non-equivalent (mod D_4) binary n X n matrices with k pairwise not adjacent 1's; k=0,...,n^2.
1, 1, 1, 1, 1, 0, 0, 1, 3, 6, 6, 3, 1, 0, 0, 0, 0, 1, 3, 17, 40, 62, 45, 20, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 43, 210, 683, 1425, 1936, 1696, 977, 366, 101, 21, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 84, 681, 4015, 16149, 46472, 95838, 143657
Offset: 1
Examples
Triangle begins: 1,1; 1,1,1,0,0; 1,3,6,6,3,1,0,0,0,0; 1,3,17,40,62,45,20,4,1,0,0,0,0,0,0,0,0; 1,6,43,210,683,1425,1936,1696,977,366,101,21,5,1,0,0,0,0,0,0,0,0,0,0,0,0; ... There are T(3, 2) = 6 non-equivalent binary 3 X 3 matrices with 2 not adjacent 1's (and no other 1's): [1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0] |0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1| [0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
Links
- Heinrich Ludwig, Rows n = 1..8 of irregular triangle, flattened
Comments