This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232570 #55 Jul 28 2024 16:39:26 %S A232570 1,8,16,19,32,47,53,64,103,112,128,144,155,163,192,199,208,221,224, %T A232570 256,257,269,272,299,311,368,397,401,419,421,448,499,512,587,599,617, %U A232570 640,683,757,768,773,784,863,883,896,907,911,929,936,991,1021,1024 %N A232570 Numbers k that divide tribonacci(k) (A000073(k)). %C A232570 Inspired by A023172 (numbers k such that k divides Fibonacci(k)). %C A232570 Includes all primes p such that x^3-x^2-x-1 has 3 distinct roots in the field GF(p) (A106279). - _Robert Israel_, Feb 07 2018 %C A232570 Includes 2^k for k >= 3. - _Robert Israel_, Jul 26 2024 %H A232570 Seiichi Manyama, <a href="/A232570/b232570.txt">Table of n, a(n) for n = 1..10000</a> %p A232570 with(LinearAlgebra[Modular]): %p A232570 T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>, %p A232570 <0|0|1>, <1|1|1>>, float[8]), n)[1, 3]: %p A232570 a:= proc(n) option remember; local k; if n=1 %p A232570 then 1 else for k from 1+a(n-1) %p A232570 while T(k$2)>0 do od; k fi %p A232570 end: %p A232570 seq(a(n), n=1..70); # _Alois P. Heinz_, Feb 05 2018 %t A232570 trib = LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 2000]; Reap[Do[If[Divisible[ trib[[n+1]], n], Print[n]; Sow[n]], {n, 1, Length[trib]-1}]][[2, 1]] (* _Jean-François Alcover_, Mar 22 2019 *) %o A232570 (Ruby) %o A232570 require 'matrix' %o A232570 def power(a, n, mod) %o A232570 return Matrix.I(a.row_size) if n == 0 %o A232570 m = power(a, n >> 1, mod) %o A232570 m = (m * m).map{|i| i % mod} %o A232570 return m if n & 1 == 0 %o A232570 (m * a).map{|i| i % mod} %o A232570 end %o A232570 def f(m, n) %o A232570 ary0 = Array.new(m, 0) %o A232570 ary0[0] = 1 %o A232570 v = Vector.elements(ary0) %o A232570 ary1 = [Array.new(m, 1)] %o A232570 (0..m - 2).each{|i| %o A232570 ary2 = Array.new(m, 0) %o A232570 ary2[i] = 1 %o A232570 ary1 << ary2 %o A232570 } %o A232570 a = Matrix[*ary1] %o A232570 mod = n %o A232570 (power(a, n, mod) * v)[m - 1] %o A232570 end %o A232570 def a(n) %o A232570 (1..n).select{|i| f(3, i) == 0} %o A232570 end %Y A232570 Cf. A000073, A023172, A106279. %K A232570 nonn %O A232570 1,2 %A A232570 _Seiichi Manyama_, Jun 17 2016