This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232580 #40 Jun 27 2022 08:49:59 %S A232580 0,0,0,1,4,12,31,74,168,369,792,1672,3487,7206,14788,30185,61356, %T A232580 124308,251199,506578,1019920,2050785,4119280,8267216,16580799, %U A232580 33236622,66594636,133385689,267089188,534692604,1070217247,2141780762,4285739832,8575004241 %N A232580 Number of binary sequences of length n that contain at least one contiguous subsequence 011. %C A232580 From _Gus Wiseman_, Jun 26 2022: (Start) %C A232580 Also the number of integer compositions of n + 1 with an even part other than the first or last. For example, the a(3) = 1 through a(5) = 12 compositions are: %C A232580 (121) (122) (123) %C A232580 (221) (141) %C A232580 (1121) (222) %C A232580 (1211) (321) %C A232580 (1122) %C A232580 (1212) %C A232580 (1221) %C A232580 (2121) %C A232580 (2211) %C A232580 (11121) %C A232580 (11211) %C A232580 (12111) %C A232580 The odd version is A274230. %C A232580 (End) %H A232580 Colin Barker, <a href="/A232580/b232580.txt">Table of n, a(n) for n = 0..1000</a> %H A232580 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 34. %H A232580 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,-1,2). %F A232580 O.g.f.: x^3/( (1-x)^2*(1-x^2/(1-x))*(1-2x) ). %F A232580 a(n) ~ 2^n. %F A232580 From _Colin Barker_, Nov 03 2016: (Start) %F A232580 a(n) = (1 + 2^n - (2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5)) + (1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5)). %F A232580 a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) for n > 3. (End) %F A232580 a(n) = 2^n - Fibonacci(n+3) + 1. - _Ehren Metcalfe_, Dec 27 2018 %F A232580 E.g.f.: 2*exp(x/2)*(5*exp(x)*cosh(x/2) - 5*cosh(sqrt(5)*x/2) - 2*sqrt(5)*sinh(sqrt(5)*x/2))/5. - _Stefano Spezia_, Apr 06 2022 %e A232580 a(4) = 4 because we have: 0011, 0110, 0111, 1011. %t A232580 nn=40;a=x/(1-x);CoefficientList[Series[a^2 x/(1-a x)/(1-2x),{x,0,nn}],x] %t A232580 (* second program *) %t A232580 Table[Length[Select[Tuples[{0,1},n],MatchQ[#,{___,0,1,1,___}]&]],{n,0,10}] (* _Gus Wiseman_, Jun 26 2022 *) %o A232580 (PARI) concat(vector(3), Vec(x^3/(-2*x^4+x^3+4*x^2-4*x+1) + O(x^40))) \\ _Colin Barker_, Nov 03 2016 %Y A232580 The complement is counted by A000071(n) = A001911(n) + 1. %Y A232580 For the contiguous pattern (1,1) or (0,0) we have A000225. %Y A232580 For the contiguous pattern (1,0,1) or (0,1,0) we have A000253. %Y A232580 For the contiguous pattern (1,0) or (0,1) we have A000295. %Y A232580 Numbers whose binary expansion is of this type are A004750. %Y A232580 For the contiguous pattern (1,1,1) or (0,0,0) we have A050231. %Y A232580 The not necessarily contiguous version is A324172. %Y A232580 Cf. A034691, A261983, A274230, A335455, A335457, A335458, A335516. %K A232580 nonn,easy %O A232580 0,5 %A A232580 _Geoffrey Critzer_, Nov 26 2013