cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A232581 Number of (n+1)X(n+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

0, 34, 42, 6406, 14398, 12486510, 41969054, 255585490674, 1079163298316, 54986925928451542, 282118997571150630, 124284077001521518573820, 748107850423156991103192, 2951299844035743073442451486916
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Diagonal of A232589

Examples

			Some solutions for n=5
..0..1..2..0..1..2....2..1..2..0..1..2....2..1..2..1..0..2....0..1..2..0..1..2
..2..0..1..0..1..0....0..1..2..0..1..0....0..1..0..2..1..0....0..1..2..0..1..2
..1..2..1..2..1..0....2..0..1..0..1..2....0..1..0..2..1..0....2..0..1..0..1..2
..1..0..1..2..1..0....1..2..1..2..1..2....2..1..0..2..1..2....1..2..1..0..1..0
..1..2..1..0..1..0....1..0..1..0..1..2....0..2..1..0..1..2....1..0..1..0..1..2
..1..0..1..2..1..0....1..2..1..0..1..0....1..0..1..2..1..0....1..2..1..0..1..2
		

A232582 Number of (n+1) X (1+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

0, 2, 4, 6, 10, 18, 32, 56, 98, 172, 302, 530, 930, 1632, 2864, 5026, 8820, 15478, 27162, 47666, 83648, 146792, 257602, 452060, 793310, 1392162, 2443074, 4287296, 7523680, 13203138, 23169892, 40660326, 71353898, 125217362, 219741152, 385618840
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 1 of A232589.

Examples

			Some solutions for n=7:
  2 1   0 1   2 1   0 1   0 1   0 1   0 1   2 1   0 1   2 1
  0 1   2 1   0 1   2 0   2 1   2 0   2 1   0 2   2 0   0 1
  2 0   0 1   2 0   1 2   0 2   1 2   0 1   1 0   1 2   2 0
  1 2   2 1   1 2   1 0   1 0   0 1   2 0   1 2   0 1   1 2
  1 0   0 1   0 1   2 1   2 1   2 0   1 2   1 0   2 1   1 0
  1 2   2 0   2 1   0 2   0 1   1 2   0 1   1 2   0 2   2 1
  1 0   1 2   0 2   1 0   2 0   1 0   2 0   1 0   1 0   0 2
  1 2   1 0   1 0   1 2   1 2   1 2   1 2   1 2   1 2   1 0
		

Formula

Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) = 2*A005314(n-1).
Empirical: G.f.: -2*x^2 / ( -1+2*x-x^2+x^3 ). - R. J. Mathar, Nov 23 2014
Theorem: a(n) = Sum_{j=1..floor((n-2)/3)} 2* Hypergeometric2F1([2+3*j-n,-(2j+1)], [1], 1). - Richard Turk, Oct 22 2019

A232583 Number of (n+1)X(2+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

10, 34, 124, 456, 1686, 6232, 23034, 85130, 314626, 1162804, 4297528, 15882942, 58700688, 216947890, 801802986, 2963329250, 10951967500, 40476633544, 149594843398, 552877431048, 2043342182250, 7551849721642, 27910368960066
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 2 of A232589

Examples

			Some solutions for n=7
..0..1..2....2..1..2....0..1..2....0..1..2....2..1..2....0..1..0....2..1..0
..0..1..2....0..1..2....2..1..0....0..1..0....0..1..0....2..1..2....2..1..2
..0..1..0....2..1..0....0..1..2....2..1..2....2..1..2....2..1..0....0..1..2
..2..1..2....2..1..0....0..1..2....0..1..2....2..1..0....0..1..0....2..1..2
..0..1..0....0..1..0....2..1..2....2..1..0....2..1..0....2..1..2....0..1..0
..2..1..2....2..1..0....0..1..0....0..1..2....0..1..2....2..1..0....0..1..2
..2..1..2....0..1..2....2..1..0....0..1..0....2..1..0....0..1..2....0..1..2
..0..1..0....0..1..0....2..1..0....2..1..0....2..1..0....0..1..2....0..1..2
		

Formula

Empirical: a(n) = 4*a(n-1) -a(n-2) -a(n-3) +2*a(n-4).
Empirical: G.f.: -2*x*(5-3*x-x^2+2*x^3) / ( -1+4*x-x^2-x^3+2*x^4 ). - R. J. Mathar, Nov 23 2014

A232584 Number of (n+1)X(3+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

2, 12, 42, 122, 332, 882, 2322, 6092, 15962, 41802, 109452, 286562, 750242, 1964172, 5142282, 13462682, 35245772, 92274642, 241578162, 632459852, 1655801402, 4334944362, 11349031692, 29712150722, 77787420482, 203650110732
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 3 of A232589.

Examples

			Some solutions for n=7
..0..1..2..1....2..1..0..1....0..1..0..1....2..1..0..1....2..1..2..1
..2..1..0..1....0..1..2..1....2..1..2..1....2..1..2..0....0..1..0..1
..2..1..2..1....2..1..0..1....2..1..0..2....2..0..1..0....0..1..2..1
..0..1..0..1....2..1..2..0....0..2..1..2....1..2..1..0....0..1..0..2
..0..1..2..1....2..0..1..0....1..0..1..0....1..0..2..1....0..2..1..2
..0..1..0..2....1..2..1..2....1..2..1..2....2..1..0..2....1..0..1..2
..0..2..1..2....1..0..1..2....1..0..1..0....0..2..1..0....1..2..1..0
..1..0..1..2....1..2..1..0....1..2..1..2....1..0..1..2....1..0..1..2
		

Formula

Empirical: a(n) = 4*a(n-1) -4*a(n-2) +a(n-3) = 2*A122678(n).
Empirical: G.f.: -2*x*(1+x)^2 / ( (x-1)*(x^2-3*x+1) ). - R. J. Mathar, Nov 23 2014

A232585 Number of (n+1)X(4+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

26, 152, 996, 6406, 41328, 266490, 1718514, 11082034, 71463916, 460844060, 2971811106, 19164098964, 123582110878, 796934839170, 5139134890906, 33140359949992, 213709793755260, 1378134577168966, 8887074754111400
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 4 of A232589

Examples

			Some solutions for n=7
..0..1..0..1..0....0..1..0..1..0....0..1..0..1..0....0..1..0..1..0
..2..1..2..1..0....2..1..2..1..0....2..1..2..1..0....2..1..2..1..0
..2..1..0..1..2....0..1..2..1..2....0..1..2..1..0....0..1..2..1..0
..2..1..2..1..0....2..1..0..1..0....0..1..2..1..0....0..1..2..1..2
..0..1..0..1..2....2..1..0..1..2....2..1..0..1..0....0..1..2..1..0
..0..1..2..1..0....0..1..2..1..0....0..1..2..1..0....0..1..2..1..2
..2..1..2..1..2....0..1..2..1..0....0..1..2..1..2....0..1..2..1..0
..0..1..0..1..2....2..1..0..1..2....0..1..2..1..0....0..1..0..1..2
		

Formula

Empirical: a(n) = 5*a(n-1) +9*a(n-2) +2*a(n-3) +a(n-4) +2*a(n-5).
Empirical: G.f.: -2*x*(13+11*x+x^2+3*x^3+2*x^4) / ( (1+x)*(2*x^4-x^3+3*x^2+6*x-1) ). - R. J. Mathar, Nov 23 2014

A232586 Number of (n+1)X(5+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

20, 108, 606, 3002, 14398, 66950, 306022, 1382638, 6200520, 27671244, 123093664, 546418140, 2422183000, 10727201704, 47478696368, 210055317910, 929074602120, 4108554199540, 18166666165648, 80320554722730, 355103563888676
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 5 of A232589

Examples

			Some solutions for n=5
..2..1..0..2..1..0....2..1..0..1..2..1....0..1..2..1..0..2....2..1..0..1..0..1
..0..1..0..2..1..0....2..1..2..1..0..2....2..1..0..2..1..0....2..1..2..1..2..1
..2..1..0..2..1..0....2..1..0..2..1..0....0..2..1..0..1..2....0..1..2..1..0..1
..2..1..0..2..1..0....2..1..0..2..1..2....1..0..1..0..1..2....2..1..2..1..2..0
..0..2..1..0..1..0....0..2..1..0..1..0....1..2..1..2..1..0....0..1..2..0..1..0
..1..0..1..2..1..0....1..0..1..2..1..0....1..0..1..2..1..0....2..0..1..2..1..0
		

Formula

Empirical: a(n) = 9*a(n-1) -22*a(n-2) -8*a(n-3) +89*a(n-4) -75*a(n-5) -75*a(n-6) +136*a(n-7) -21*a(n-8) -51*a(n-9) +2*a(n-10) +24*a(n-11) -3*a(n-13) -a(n-14)

A232587 Number of (n+1)X(6+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

70, 690, 8104, 93236, 1079300, 12486510, 144506106, 1672314806, 19353375198, 223972627480, 2591990800908, 29996594823464, 347144643738454, 4017436125487796, 46492991691492538, 538054174106467882
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 6 of A232589

Examples

			Some solutions for n=3
..2..1..0..1..2..1..2....0..1..0..1..0..1..2....0..1..2..1..0..1..2
..0..1..2..1..0..1..2....2..1..2..1..2..1..0....0..1..2..1..0..1..2
..0..1..0..1..0..1..2....0..1..2..1..0..1..0....0..1..0..1..0..1..2
..2..1..2..1..0..1..0....0..1..0..1..2..1..2....2..1..2..1..2..1..0
		

Formula

Empirical: a(n) = 12*a(n-1) +9*a(n-2) -167*a(n-3) -12*a(n-4) +939*a(n-5) -314*a(n-6) -2754*a(n-7) +2190*a(n-8) +4330*a(n-9) -6045*a(n-10) -2542*a(n-11) +7749*a(n-12) -2051*a(n-13) -3957*a(n-14) +2749*a(n-15) +541*a(n-16) -459*a(n-17) -6*a(n-18) -169*a(n-19) -4*a(n-20) -40*a(n-21) -2*a(n-22) +4*a(n-23) for n>27

A232588 Number of (n+1)X(7+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

90, 744, 7568, 68072, 595304, 5045772, 41969054, 344123498, 2791211292, 22459482618, 179631450494, 1430206865644, 11348368440492, 89814921458080, 709441275635178, 5595533382083776, 44083691591740368, 347010348931531478
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 7 of A232589

Examples

			Some solutions for n=3
..0..1..2..0..1..2..1..0....2..1..0..2..1..2..1..0....0..1..2..1..0..2..1..0
..0..1..2..0..1..2..1..0....0..2..1..0..1..0..1..0....0..1..0..2..1..2..1..0
..0..1..2..0..1..2..1..0....1..0..1..2..1..2..1..0....0..2..1..0..1..2..1..0
..0..1..2..0..1..0..1..2....1..2..1..0..1..2..1..2....1..0..1..2..1..0..1..2
		

Formula

Empirical: a(n) = 18*a(n-1) -77*a(n-2) -313*a(n-3) +2732*a(n-4) +249*a(n-5) -38061*a(n-6) +45840*a(n-7) +279302*a(n-8) -581228*a(n-9) -1117174*a(n-10) +3446483*a(n-11) +2380630*a(n-12) -11930318*a(n-13) -2781301*a(n-14) +27732967*a(n-15) +2834911*a(n-16) -47611218*a(n-17) -7266202*a(n-18) +62440319*a(n-19) +19473699*a(n-20) -60093400*a(n-21) -33402804*a(n-22) +37057039*a(n-23) +35703040*a(n-24) -8358339*a(n-25) -21730512*a(n-26) -5474419*a(n-27) +5391258*a(n-28) +3352312*a(n-29) +132351*a(n-30) -68518*a(n-31) +77270*a(n-32) +18709*a(n-33) +120066*a(n-34) +164226*a(n-35) +66593*a(n-36) -37343*a(n-37) -45515*a(n-38) -8483*a(n-39) +5811*a(n-40) +2451*a(n-41) -34*a(n-42) -135*a(n-43) -16*a(n-44) for n>45

A232590 Number of (1+1)X(n+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

0, 10, 2, 26, 20, 70, 90, 210, 336, 674, 1178, 2234, 4036, 7502, 13714, 25314, 46464, 85562, 157266, 289370, 532116, 978838, 1800234, 3311282, 6090256, 11201874, 20603306, 37895546, 69700612, 128199582, 235795618, 433695938, 797691008
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Row 1 of A232589

Examples

			Some solutions for n=7
..0..1..2..1..0..1..2..0....0..1..2..1..2..1..0..2....0..1..2..1..2..0..1..2
..2..1..0..1..2..0..1..2....0..1..0..1..0..2..1..0....2..1..0..1..2..0..1..0
		

Formula

Empirical: a(n) = -a(n-1) +2*a(n-2) +4*a(n-3) +3*a(n-4) +a(n-5).
Empirical: G.f.: -2*x^2*(5+6*x+4*x^2+x^3) / ( (x^3+x^2+x-1)*(1+x)^2 ). - R. J. Mathar, Nov 23 2014

A232591 Number of (2+1) X (n+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

2, 34, 12, 152, 108, 690, 744, 3232, 4516, 15592, 25724, 76914, 141516, 385622, 762648, 1955944, 4058152, 10001440, 21421592, 51425362, 112496648, 265415854, 588810972, 1373336224, 3075128652, 7118096080, 16037159652, 36935382354
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Examples

			Some solutions for n=7:
..2..1..0..2..1..0..1..0....0..1..2..0..1..0..1..2....2..1..0..1..2..0..1..2
..2..1..0..2..1..2..1..0....2..0..1..2..1..2..1..0....2..1..2..1..2..0..1..2
..0..2..1..0..1..2..1..2....1..2..1..0..1..0..1..2....0..1..0..1..2..0..1..2
		

Crossrefs

Row 2 of A232589.

Formula

Empirical: a(n) = 5*a(n-2) + 4*a(n-3) - 3*a(n-4) - 12*a(n-5) - 3*a(n-6) + 6*a(n-7) + 6*a(n-8) + 2*a(n-9) for n>10.
Empirical g.f.: x*(1 + 17*x + x^2 - 13*x^3 - 41*x^4 + 4*x^5 + 23*x^6 + 20*x^7 + 2*x^8 - x^9) / (1 - 5*x^2 - 4*x^3 + 3*x^4 + 12*x^5 + 3*x^6 - 6*x^7 - 6*x^8 - 2*x^9). - Colin Barker, Oct 05 2018
Showing 1-10 of 15 results. Next