This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232598 #32 Jun 02 2025 08:50:34 %S A232598 1,1,3,1,9,13,1,21,78,75,1,45,325,750,541,1,93,1170,4875,8115,4683,1, %T A232598 189,3913,26250,75740,98343,47293,1,381,12558,127575,568050,1245678, %U A232598 1324204,545835,1,765,39325,582750,3760491,12391218,21849366,19650060,7087261 %N A232598 T(n,k) = Stirling2(n,k) * OrderedBell(k). %C A232598 T(n,k) is the number of preferential arrangements of the k-part partitions of the set {1...n}. %C A232598 2*T(n,k) is the number of formulas in first order logic that have an n-place predicate and use k variables, but don't include a negator. %C A232598 4*T(n,k) is the number of such formulas that may include an negator. %C A232598 The entries T(n,n) are A000670(n), i.e. the ordered Bell numbers. %H A232598 Tilman Piesk, <a href="/A232598/b232598.txt">First 100 rows, flattened</a> %H A232598 Tilman Piesk, <a href="http://en.wikiversity.org/wiki/Preferential_arrangements_of_set_partitions">Preferential arrangements of set partitions</a> (Wikiversity) %F A232598 T(n,k) = A008277(n,k) * A000670(k). %F A232598 T(n,n) = A000670(n). %F A232598 T(n,2) = A068156(n-1). %F A232598 From _Peter Bala_, Nov 27 2013: (Start) %F A232598 E.g.f.: 1/( 2 - exp(x*(exp(t) - 1)) ) = 1 + x*t + (x + 3*x^2)*t^2/2! + (x + 9*x^2 + 13*x^3)*t^3/3! + .... %F A232598 Recurrence equation (for entries not on main diagonal): (n - k)*T(n,k) = C(n,1)*T(n-1,k) - C(n,2)*T(n-2,k) + C(n,3)*T(n-3,k) - ... (End) %e A232598 Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level. %e A232598 Compare descriptions of A083355 and A233357. %e A232598 a(3,1) = 1: %e A232598 {1,2,3} %e A232598 a(3,2) = 9: %e A232598 {1,2}{3} %e A232598 {1,3}{2} %e A232598 {2,3}{1} %e A232598 {1,2}:{3} {3}:{1,2} %e A232598 {1,3}:{2} {2}:{1,3} %e A232598 {2,3}:{1} {1}:{2,3} %e A232598 a(3,3) = 13: %e A232598 {1}{2}{3} %e A232598 {1}{2}:{3} {3}:{1}{2} %e A232598 {1}{3}:{2} {2}:{1}{3} %e A232598 {2}{3}:{1} {1}:{2}{3} %e A232598 {1}:{2}:{3} %e A232598 {1}:{3}:{2} %e A232598 {2}:{1}:{3} %e A232598 {2}:{3}:{1} %e A232598 {3}:{1}:{2} %e A232598 {3}:{2}:{1} %e A232598 Triangle begins: %e A232598 k = 1 2 3 4 5 6 7 8 sums %e A232598 n %e A232598 1 1 1 %e A232598 2 1 3 4 %e A232598 3 1 9 13 23 %e A232598 4 1 21 78 75 175 %e A232598 5 1 45 325 750 541 1662 %e A232598 6 1 93 1170 4875 8115 4683 18937 %e A232598 7 1 189 3913 26250 75740 98343 47293 251729 %e A232598 8 1 381 12558 127575 568050 1245678 1324204 545835 3824282 %Y A232598 A008277 (Stirling2), A000670 (ordered Bell), A068156 (column k=2), A083355 (row sums: number of preferential arrangements), A233357 (number of preferential arrangements by number of levels). %K A232598 nonn,tabl %O A232598 1,3 %A A232598 _Tilman Piesk_, Nov 26 2013