This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232599 #26 Mar 31 2021 20:24:02 %S A232599 0,-1,7,-20,44,-81,135,-208,304,-425,575,-756,972,-1225,1519,-1856, %T A232599 2240,-2673,3159,-3700,4300,-4961,5687,-6480,7344,-8281,9295,-10388, %U A232599 11564,-12825,14175,-15616,17152,-18785,20519 %N A232599 Alternating sum of cubes, i.e., Sum_{k=0..n} k^p*q^k for p=3, q=-1. %H A232599 Stanislav Sykora, <a href="/A232599/b232599.txt">Table of n, a(n) for n = 0..1000</a> %H A232599 S. Sykora, <a href="http://dx.doi.org/10.3247/SL1Math06.002">Finite and Infinite Sums of the Power Series (k^p)(x^k)</a>, DOI 10.3247/SL1Math06.002, Section V. %H A232599 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-3,-2,2,3,1). %F A232599 a(n) = ((-1)^n*(4*n^3+6*n^2-1) +1)/8. %F A232599 G.f.: (-x)*(1-4*x+x^2) / ( (1-x)*(1+x)^4 ). - _R. J. Mathar_, Nov 23 2014 %F A232599 E.g.f.: (exp(x) - (1 +10*x -18*x^2 +4*x^3)*exp(-x))/8. - _G. C. Greubel_, Mar 31 2021 %F A232599 a(n) = - 3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5). - _Wesley Ivan Hurt_, Mar 31 2021 %e A232599 a(3) = 0^3 - 1^3 + 2^3 - 3^3 = -20. %p A232599 A232599:= n-> (1 -(-1)^n*(1 -6*n^2 -4*n^3))/8; seq(A232599(n), n=0..30); # _G. C. Greubel_, Mar 31 2021 %t A232599 Accumulate[Times@@@Partition[Riffle[Range[0,40]^3,{1,-1},{2,-1,2}],2]] (* _Harvey P. Dale_, Jul 22 2016 *) %o A232599 (PARI) S3M1(n)=((-1)^n*(4*n^3+6*n^2-1)+1)/8; %o A232599 v = vector(10001);for(k=1,#v,v[k]=S3M1(k-1)) %o A232599 (Magma) [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8: n in [0..30]]; // _G. C. Greubel_, Mar 31 2021 %o A232599 (Sage) [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8 for n in (0..30)] # _G. C. Greubel_, Mar 31 2021 %Y A232599 Cf. A000578 (cubes), A011934 (absolute values), A059841 (p=0,q=-1), A130472 (p=1,q=-1), A089594 (p=2,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2). %K A232599 sign,easy %O A232599 0,3 %A A232599 _Stanislav Sykora_, Nov 26 2013