cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A232398 Number of ways to write n = p + (2^k - k) + (2^m - m) with p prime and 0 < k <= m.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 4, 3, 4, 2, 4, 4, 4, 2, 3, 3, 3, 4, 4, 1, 3, 4, 5, 3, 5, 4, 5, 4, 4, 1, 4, 3, 5, 3, 5, 4, 5, 4, 5, 3, 3, 4, 5, 2, 3, 3, 4, 4, 5, 3, 3, 4, 6, 4, 5, 3, 7, 5, 5, 3, 4, 6, 6, 4, 7, 4, 6, 6, 7, 3, 3, 4, 5, 5, 6, 2, 6, 5, 5, 4, 5, 5, 5, 5, 5, 1, 4, 6, 4, 2, 5, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 23 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
This was motivated by A231201. We have verified the conjecture for n up to 2*10^8. It seems that a(n) = 1 for no odd n.
In contrast, R. Crocker proved that there are infinitely many positive odd numbers not of the form p + 2^k + 2^m with p prime and k, m > 0.
It seems that any integer n > 3 not equal to 1361802 can be written in the form p + (2^k + k) + (2^m + m), where p is a prime, and k and m are nonnegative integers.
On Dec 08 2013, Qing-Hu Hou finished checking the conjecture for n up to 10^10 and found no counterexamples. - Zhi-Wei Sun, Dec 08 2013

Examples

			a(11) = 2 since 11 = 5 + (2 - 1) + (2^3 - 3) = 7 + (2^2 - 2) + (2^2 - 2) with 5 and 7 prime.
a(28) = 1 since 28 = 11 + (2^3 - 3) + (2^4 - 4) with 11 prime.
a(94) = 1 since 94 = 31 + (2^3 - 3) + (2^6 - 6) with 31 prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    A232398[n_] := Sum[If[2^m - m < n && PQ[n - 2^m + m - 2^k + k], 1, 0], {m, Log[2, 2n]}, {k, m}]; Table[A232398[n], {n, 100}]

A232862 Least positive integer m <= n^2/2 + 3 such that the set {prime(k) - k: k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.

Original entry on oeis.org

1, 3, 4, 11, 9, 8, 10, 15, 29, 13, 23, 22, 23, 37, 32, 28, 48, 44, 53, 41, 45, 67, 76, 117, 119, 91, 121, 88, 89, 101, 72, 88, 100, 143, 144, 185, 145, 104, 176, 141, 144, 175, 187, 213, 121, 255, 128, 129, 189, 243, 122, 267, 275, 242, 209, 205, 130, 153, 263, 335
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 01 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
Note that a(4) = 11 = 4^2/2 + 3.

Examples

			a(3) = 4 since prime(1) - 1 = prime(2) - 2 = 1, prime(3) - 3 = 2, prime(4) - 4 = 3, and {1,2,3} is a complete system of residues modulo 3.
		

Crossrefs

Programs

  • Mathematica
      L[m_,n_]:=Length[Union[Table[Mod[Prime[k]-k,n],{k,1,m}]]]
    Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2/2+3}];
    Print[n," ",0];Label[aa];Continue,{n,1,60}]

A232894 Least positive integer m such that {Catalan(k) - k: k = 1, ..., m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.

Original entry on oeis.org

1, 5, 4, 11, 16, 13, 31, 27, 18, 22, 34, 52, 45, 45, 31, 112, 57, 73, 113, 99, 64, 77, 114, 215, 134, 106, 89, 99, 127, 209, 161, 239, 135, 178, 96, 207, 185, 172, 157, 231, 174, 195, 309, 115, 274, 309, 386, 239, 200, 336, 188, 199, 181, 181, 116, 311, 229, 290, 663, 239
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 02 2013

Keywords

Comments

Conjecture: (i) Let n be any positive integer. Then 0 < a(n) <= n^2/2 + 7. Also, {Catalan(k) + k: k = 1, ..., [n^2/2] + 23} contains a complete system of residues modulo n, where [.] is the floor function.
(ii) For any integer n > 3, neither Catalan(n) - n nor Catalan(n) + n has the form x^m with m > 1 and x > 1.

Examples

			a(2) = 5 since Catalan(k) - k is even for each k = 1, 2, 3, 4, and Catalan(5) - 5 = 37 is odd.
		

Crossrefs

Programs

  • Mathematica
    L[m_,n_]:=Length[Union[Table[Mod[CatalanNumber[k]-k,n],{k,1,m}]]]
    Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2/2+7}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,60}]

A232898 Least positive integer m such that {C(2k,k) + k: k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.

Original entry on oeis.org

1, 2, 7, 5, 10, 12, 9, 24, 31, 22, 59, 25, 27, 30, 42, 56, 123, 66, 57, 72, 84, 78, 73, 132, 136, 57, 99, 80, 129, 211, 170, 226, 121, 170, 126, 129, 238, 218, 157, 132, 348, 198, 388, 103, 171, 166, 247, 181, 205, 352, 194, 136, 430, 226, 117, 224, 237, 292, 364, 241
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 02 2013

Keywords

Comments

Conjecture: (i) Let n be any positive integer. Then 0 < a(n) <= n^2/2 + 3. Also, {C(2k,k) - k: k = 1, ..., [n^2/2] + 15} contains a complete system of residues modulo n, where [.] is the floor function.
(ii) For any integer n > 2, neither C(2n,n) + n nor C(2n,n) - n has the form x^m with m > 1.

Examples

			a(2) = 2 since C(2*1,1) + 1 = 3 is odd and C(2*2,2) + 2 = 8 is even.
		

Crossrefs

Programs

  • Mathematica
    L[m_,n_]:=Length[Union[Table[Mod[Binomial[2k,k]+k,n],{k,1,m}]]]
    Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2/2+3}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,60}]

A232891 Least positive integer m <= n^2/2 + 3 such that {k*prime(k): k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.

Original entry on oeis.org

1, 3, 4, 11, 7, 7, 10, 17, 43, 13, 51, 22, 51, 36, 31, 49, 64, 71, 119, 73, 86, 68, 141, 110, 153, 85, 83, 86, 144, 81, 174, 127, 115, 87, 122, 138, 143, 134, 133, 142, 211, 229, 152, 104, 109, 177, 259, 142, 194, 176, 196, 311, 312, 193, 243, 197, 396, 169, 156, 171
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 02 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0.
(ii) For any positive integer n not equal to 3, the number n*prime(n) + 1 cannot be a power x^m with m > 1.
(iii) There are infinitely many positive integers n with n - 1, n + 1, n + prime(n), n + prime(n)^2, n^2 + prime(n), n^2 + prime(n)^2 all prime.

Examples

			a(3) = 4 since 1*prime(1) = 2, 2*prime(2) === 3*prime(3) == 0 (mod 3), and 4*prime(4) = 28 == 1 (mod 3).
		

Crossrefs

Programs

  • Mathematica
    L[m_,n_]:=Length[Union[Table[Mod[k*Prime[k],n],{k,1,m}]]]
    Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2/2+3}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,60}]
Showing 1-5 of 5 results.