A232626 Degree of the algebraic number 2*sin(4*Pi/n).
1, 1, 2, 1, 4, 2, 6, 1, 6, 4, 10, 2, 12, 6, 8, 2, 16, 6, 18, 4, 12, 10, 22, 1, 20, 12, 18, 6, 28, 8, 30, 4, 20, 16, 24, 6, 36, 18, 24, 2, 40, 12, 42, 10, 24, 22, 46, 4, 42, 20, 32, 12, 52, 18, 40, 3, 36, 28, 58, 8, 60, 30, 36, 8, 48, 20, 66, 16, 44, 24, 70, 3, 72, 36, 40
Offset: 1
Examples
a(1) = A093819(1) = 1; a(4) = phi(2) = 1; a(6) = phi(3) = 2; a(8) = 1; a(9) = A093819(9) = 6.
References
- Ivan Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..175 from Vincenzo Librandi)
Programs
-
Mathematica
f[n_] := Exponent[ MinimalPolynomial[ 2Sin[ 4Pi/n]][x], x]; Array[f, 75] (* Robert G. Wilson v, Jul 28 2014 *)
-
PARI
a(n) = {my(k = denominator((n-8)/(2*n))); if(k == 1, 1, eulerphi(2*k)/2);} \\ Amiram Eldar, Nov 09 2024
Formula
a(n) = delta(A232625(n)), n >=1, with delta(1) = 1 and delta(k) = phi(2*k)/2 with Euler's totient function phi (A000010). delta(k) = A055034(k).
a(2*k+1) = A093819(2*k+1), k >= 0.
For k >= 1: a(2*k) = A093819(k), that is a(2*k) = 1 if k=4, phi(k) if k odd or k == 2 (mod 4), phi(k)/2 if k == 0 (mod 8), phi(k)/4 if k == 4 (mod 8) (but not k=4).
Comments