cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232626 Degree of the algebraic number 2*sin(4*Pi/n).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 6, 4, 10, 2, 12, 6, 8, 2, 16, 6, 18, 4, 12, 10, 22, 1, 20, 12, 18, 6, 28, 8, 30, 4, 20, 16, 24, 6, 36, 18, 24, 2, 40, 12, 42, 10, 24, 22, 46, 4, 42, 20, 32, 12, 52, 18, 40, 3, 36, 28, 58, 8, 60, 30, 36, 8, 48, 20, 66, 16, 44, 24, 70, 3, 72, 36, 40
Offset: 1

Views

Author

Wolfdieter Lang, Dec 12 2013

Keywords

Comments

See the comment on A231190 for the formula for 2*sin(Pi*4/n) = 2*cos(Pi*p(2,n)/q(2,n)) with gcd(p(2,n),q(2,n)) = 1, where p(2,n) = A231190(n) and q(2,n) = A232625(n). This shows that 2*sin(Pi*4/n) is an integer in the algebraic number field Q(rho(q(2,n))) of degree a(n) = delta(q(2,n)) with delta(k) = A055034(k).
This degree a(n) is given by I. Niven's Theorem 3.9, pp. 37-38, by Niven(n/gcd(2,n)) with Niven(n) = A093819(n) the degree of 2*sin(2*Pi/n). Note that Niven uses gcd(k, n) = 1 in the derivation, and Niven(4) = 1. See the bisection given in the formula section which is obtained from this.

Examples

			a(1) = A093819(1) = 1; a(4) = phi(2) = 1; a(6) = phi(3) = 2; a(8) = 1; a(9) = A093819(9) = 6.
		

References

  • Ivan Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

Crossrefs

Programs

  • Mathematica
    f[n_] := Exponent[ MinimalPolynomial[ 2Sin[ 4Pi/n]][x], x]; Array[f, 75] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    a(n) = {my(k = denominator((n-8)/(2*n))); if(k == 1, 1, eulerphi(2*k)/2);} \\ Amiram Eldar, Nov 09 2024

Formula

a(n) = delta(A232625(n)), n >=1, with delta(1) = 1 and delta(k) = phi(2*k)/2 with Euler's totient function phi (A000010). delta(k) = A055034(k).
a(2*k+1) = A093819(2*k+1), k >= 0.
For k >= 1: a(2*k) = A093819(k), that is a(2*k) = 1 if k=4, phi(k) if k odd or k == 2 (mod 4), phi(k)/2 if k == 0 (mod 8), phi(k)/4 if k == 4 (mod 8) (but not k=4).