A232627 Discriminants of the minimal polynomials of 2*sin(2*Pi/n) for n >= 1.
1, 1, 12, 1, 2000, 12, 1075648, 8, 1259712, 2000, 2414538435584, 1, 7340688973975552, 1075648, 324000000, 2048, 187591757103747287810048, 1259712, 1436650532447139184230793216, 5, 843466573910016, 2414538435584
Offset: 1
Examples
n=5: MP(1; 5, x) = 5 - 5*x^2 + x^4 with the four zeros x[1] = +sqrt(2 + tau), x[2] = -sqrt(2 + tau), x[3] = +sqrt(3 - tau), x[4] = -sqrt(3 - tau), with the golden section tau := (1 + sqrt(5))/2. They produce the discriminant(MP(1; 5, x)) = (Det(Vandermonde(4,[x[1],x[2],x[3],x[4]])))^2 = (20*sqrt(5))^2 = 2000.
Links
- Eric Weisstein's World of Mathematics, Polynomial Discriminant.
- Eric Weisstein's World of Mathematics, Vandermonde Determinant.
Comments