A232630 Coefficient table for the minimal polynomials of 2*sin(4*Pi/n). Rising powers of x.
0, 1, 0, 1, -3, 0, 1, 0, 1, 5, 0, -5, 0, 1, -3, 0, 1, -7, 0, 14, 0, -7, 0, 1, -2, 1, -3, 0, 9, 0, -6, 0, 1, 5, 0, -5, 0, 1, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, -3, 0, 1, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, -7, 0, 14, 0, -7, 0, 1, 1, 0, -8, 0, 14, 0, -7, 0, 1, -2, 0, 1, 17, 0, -204, 0, 714, 0, -1122, 0, 935, 0, -442, 0, 119, 0, -17, 0, 1
Offset: 1
Examples
The table a(n,m) begins: -------------------------------------------------------------------------------------- n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 1: 0 1 2: 0 1 3: -3 0 1 4: 0 1 5: 5 0 -5 0 1 6: -3 0 1 7: -7 0 14 0 -7 0 1 8: -2 1 9: -3 0 9 0 -6 0 1 10: 5 0 -5 0 1 11: -11 0 55 0 -77 0 44 0 -11 0 1 12: -3 0 1 13: 13 0 -91 0 182 0 -156 0 65 0 -13 0 1 14: -7 0 14 0 -7 0 1 15: 1 0 -8 0 14 0 -7 0 1 16: -2 0 1 17: 17 0 -204 0 714 0 -1122 0 935 0 -442 0 119 0 -17 0 1 18: -3 0 9 0 -6 0 1 19: -19 0 285 0 -1254 0 2508 0 -2717 0 1729 0 -665 0 152 0 -19 0 1 20: 5 0 -5 0 1 ... n=1: 2*sin(4*Pi/1) = 0 is rational, therefore MP2(1, x) = x, with coefficients 0, 1, and degree A232626(1) = 1. PB2(1, rho(1,1)) = PB2(1, rho(1)) = 0. n=3: A232626(2) = 2. PB2(2, x) = -x, C(6, x) = x^2 - 3, with zeros rho(6) and R(5, rho(6)) (for R see A127672), hence rho(6,1) = rho(6) and rho(6,2) = R(5, rho(6))= 5*rho(6) - 5*rho(6)^3 + 1*rho(6)^5, MP2(3, x) = (x - (-rho(6)))*(x - (- R(5, rho(6))) reduced with rho(6)^2 = 3 leading to MP2(3, x) = -3 + x^2, yielding row n=3: -3 0 1. n=8: this row -2, 1 coincides with row n=4 of A231188. n=17: coincides with WolframAlpha's MinimalPolynomial[2*sin(4*Pi/17),x] = 17-204 x^2+714 x^4-1122 x^6+935 x^8-442 x^10+119 x^12-17 x^14+x^16.
Comments