A232631 Coefficient table for minimal polynomials of s(2*l)^2 = (2*sin(Pi/(2*l)))^2.
-4, 1, -2, 1, -1, 1, 2, -4, 1, 1, -3, 1, 1, -4, 1, -1, 6, -5, 1, 2, -16, 20, -8, 1, -1, 9, -6, 1, 1, -12, 19, -8, 1, -1, 15, -35, 28, -9, 1, 1, -16, 20, -8, 1, 1, -21, 70, -84, 45, -11, 1, 1, -24, 86, -104, 53, -12, 1, 1, -24, 26, -9, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1
Offset: 1
Examples
The table a(l,m) begins (n = 2*l): n, l\m 0 1 2 3 4 5 6 ... 2, 1: -4 1 4, 2: -2 1 6, 3: -1 1 8, 4: 2 -4 1 10, 5: 1 -3 1 12, 6: 1 -4 1 14, 7: -1 6 -5 1 16, 8: 2 -16 20 -8 1 18, 9: -1 9 -6 1 20, 10: 1 -12 19 -8 1 22, 11: -1 15 -35 28 -9 1 24, 12: 1 -16 20 -8 1 26, 13: 1 -21 70 -84 45 -11 1 28, 14: 1 -24 86 -104 53 -12 1 30, 15: 1 -24 26 -9 1 ... The minimal polynomial of s(10)^2 = (2*sin(Pi/10))^2 = 2 - rho(5) is MPs2(5, x) = product(x - (2- rho(5;j)), j=1..2) = (x - (2 - phi))*(x - (2 - (1-phi))) with rho(5) = phi the golden section satisfying C(5, phi) = phi^2 - phi -1 = 0, hence MPs2(5, x) = 2 + phi - phi^2 - 3*x + x^2 = 1 - 3*x + x^2. The row n=26 checks with WolframAlpha's MinimalPolynomial[(2*sin(Pi/26))^2 ,x] = 1-21 x+70 x^2-84 x^3+45 x^4-11 x^5+x^6.
Programs
-
Mathematica
Flatten[ CoefficientList[ Table[ MinimalPolynomial[ (2*Sin[Pi/(2*l)])^2, x], {l, 1, 17}], x]] (* adapted from Jean-François Alcover, A187360 *) (* Wolfdieter Lang, Dec 23 2013 *)
Formula
a(l,m) = [x^m] MPs2(l, x), l >= 1, m = 0, 1, ...., delta(l), with the minimal polynomial MPs2(l, x) of (2*sin(Pi/(2*l)))^2, given above in a comment. The degree delta(l) = A055034(l).
Comments