cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232632 Coefficient table for the minimal polynomials of s(2*l+1)^2 = (2*sin(Pi/(2*l+1)))^2.

This page as a plain text file.
%I A232632 #10 Aug 13 2025 22:58:13
%S A232632 0,1,-3,1,5,-5,1,-7,14,-7,1,-3,9,-6,1,-11,55,-77,44,-11,1,13,-91,182,
%T A232632 -156,65,-13,1,1,-8,14,-7,1,17,-204,714,-1122,935,-442,119,-17,1,-19,
%U A232632 285,-1254,2508,-2717,1729,-665,152,-19,1,1,-16,60,-78,44,-11,1,-23,506,-3289,9867,-16445,16744,-10948,4692,-1311,230,-23,1
%N A232632 Coefficient table for the minimal polynomials of s(2*l+1)^2 = (2*sin(Pi/(2*l+1)))^2.
%C A232632 The length of row l is delta(2*l+1) + 1 = A055034(2*l+1) + 1, l >= 0.
%C A232632 See the comments on A232631 (even n case) for s(n) = 2*sin(Pi/n) and the minimal polynomial of s(n)^2. Here n = 2*l+1 and s(2*l+1)^2 = 4 - rho(2*l+1)^2 is an integer in the algebraic number field Q(rho(2*l+1)). The minimal polynomial of s(2*l+1)^2 is then MPs2(2*l+1, x) = product(x - 2*(1 + cos(Pi*rpnodd(2*l+1,j)/(2*l+1))), j=1..delta(2*l+1)), l >= 0, where rpnodd(2*l+1) is the list of positive odd numbers < 2*l+1 and relatively prime to 2*l+1. rpnodd(2*l+1,j) is the j-th member of this increasingly ordered list. Here the identity 4 - (2*cos(Pi*(2*k+1)/(2*l+1)))^2 = 2*(1 - cos(Pi*2*(2*k+1)/(2*l+1))) = 2*(1 - (- cos(Pi*(2*l+1 - 2*(2*k+1))/ (2*l+1)))) has been used, and for 2*k+1 < 2*l+1 and gcd(2*k+1, 2*l+1) = 1 this becomes the product given above because 1 = gcd(-(2*k+1), 2*l+1) = gcd(-2*(2*k+1), 2*l+1) = gcd(2*l+1, -2*(2*k+1) + (2*l+1)).
%C A232632 This computation was motivated by a preprint of S. Mustonen, P. Haukkanen and J. K. Merikoski, called ``Polynomials associated with squared diagonals of regular polygons'', Nov 16 2013.
%F A232632 a(l,m) = [x^m] MPs2(2*l+1, x), l >= 1, m = 0, 1, ...., delta(l), with the minimal polynomial MPs2(l, x) of (2*sin(Pi/(2*l+1)))^2, explained above in a comment.
%e A232632 The table a(l,m) begins (n = 2*l+1):
%e A232632 ------------------------------------------------------------------------------------------------------
%e A232632 n,   l\m     0      1      2       3        4       5        6       7     8      9    10  11 ...
%e A232632 1,   0:      0      1
%e A232632 3,   1:     -3      1
%e A232632 5,   2:      5     -5      1
%e A232632 7,   3:     -7     14     -7       1
%e A232632 9,   4:     -3      9     -6       1
%e A232632 11,  5:    -11     55    -77      44      -11       1
%e A232632 13,  6:     13    -91    182    -156       65     -13        1
%e A232632 15,  7:      1     -8     14      -7        1
%e A232632 17,  8:     17   -204    714   -1122      935    -442      119     -17      1
%e A232632 19,  9:    -19    285  -1254    2508    -2717    1729     -665     152    -19     1
%e A232632 21, 10:      1    -16     60     -78       44     -11        1
%e A232632 23, 11:    -23    506  -3289    9867   -16445   16744   -10948    4692  -1311   230   -23   1
%e A232632 25, 12:      5   -125    875   -2675     4300   -4005     2275    -800    170   -20     1
%e A232632 27, 13:     -3     81   -540    1386    -1782    1287     -546     135    -18     1
%e A232632 ....
%e A232632 n=29, l=14:  29,-1015,10556,-51272,140998,-243542,281010,-224808,127281,-51359,14674, -2900,377,-29,1.
%e A232632 n=31, l=15: -31, 1240, -14756, 82212, -260338, 520676, -700910, 660858, -447051, 219604, -78430, 20150, -3627, 434, -31, 1.
%e A232632 ...
%e A232632 The minimal polynomial of s(5)^2 = (2*sin(Pi/5))^2 = 4 - rho(5)^2
%e A232632 = 2*(1 - cos(Pi*2/5)) = 2*(1 + cos(Pi*3/5)),  approx. 1.381966, is MPs2(5, x) =  product(x - 2*(1 + cos(Pi*rpnodd(5,j)/5)), j=1..2) = (x - 2*(1 + cos(Pi/5))*(x - 2*(1 + cos(Pi*3/5)) = (x - (2 + phi)*(x - (2 + 1 - phi)) = x^2 - 5*x + (6 + phi - phi^2) = x^2 - 5*x +5, where phi = rho(5) is the golden section.
%e A232632 The row n=17 checks with WolframAlpha's MinimalPolynomial[(2*sin(Pi/17))^2 ,x] = 17-204 x+714 x^2-1122 x^3+935 x^4-442 x^5+119 x^6-17 x^7+x^8.
%t A232632 Flatten[ CoefficientList[ Table[ MinimalPolynomial[ (2*Sin[Pi/(2*l+1)])^2, x], {l, 0, 11}], x]] (* adapted from _Jean-François Alcover_, A187360 *) (* _Wolfdieter Lang_, Dec 23 2013 *)
%Y A232632 Cf. A232631 (even n), A232633 (all n), A055034.
%K A232632 sign,tabf,easy
%O A232632 0,3
%A A232632 _Wolfdieter Lang_, Dec 18 2013