A232633 Coefficient table for minimal polynomials of s(n)^2 = (2*sin(Pi/n))^2.
0, 1, -4, 1, -3, 1, -2, 1, 5, -5, 1, -1, 1, -7, 14, -7, 1, 2, -4, 1, -3, 9, -6, 1, 1, -3, 1, -11, 55, -77, 44, -11, 1, 1, -4, 1, 13, -91, 182, -156, 65, -13, 1, -1, 6, -5, 1, 1, -8, 14, -7, 1, 2, -16, 20, -8, 1, 17, -204, 714, -1122, 935, -442, 119, -17, 1, -1, 9, -6, 1, -19, 285, -1254, 2508, -2717, 1729, -665, 152, -19, 1
Offset: 1
Examples
The table a(n,m) begins: n/m 0 1 2 3 4 5 6 7 8 9 ... 1: 0 1 2: -4 1 3: -3 1 4: -2 1 5: 5 -5 1 6: -1 1 7: -7 14 -7 1 8: 2 -4 1 9: -3 9 -6 1 10: 1 -3 1 11: -11 55 -77 44 -11 1 12: 1 -4 1 13: 13 -91 182 -156 65 -13 1 14: -1 6 -5 1 15: 1 -8 14 -7 1 16: 2 -16 20 -8 1 17: 17 -204 714 -1122 935 -442 119 -17 1 18: -1 9 -6 1 19: -19 285 -1254 2508 -2717 1729 -665 152 -19 1 20: 1 -12 19 -8 1 ... MPs2(7, x) = Product_{j=0..2} (x - 2*(1 + cos(Pi*(2*j+1)/7))) = (x - (2 + rho(7)))*(x - (2 + (-1 - rho(7) + rho(7)^2)))*(x - (2 + (2 - rho(7)^2))) = (-8+4*z-2*z^2-5*z^3+z^4+z^5) + (14-z+2*z^2+z^3-z^4)*x -7*x^2 +x^3, with z = rho(7), and this becomes due to C(7, z) = z^3 - z^2 - 2*z + 1, finally MPs2(7, x) = -7 + 14*x - 7*x^2 + x^3. MPs2(14, x) = Product_{j=0..2} (x - 2*(1 - cos(Pi*(2*j+1)/7))) = (x - (2 - rho(7)))*(x - (2 - (-1 - rho(7) + rho(7)^2)))*(x - (2 - (2 - rho(7)^2))) = -1 + 6*x - 5*x^2 + x^3 (using again C(7, z) = 0 with z = rho(7)).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..14000 (rows n = 1..300, flattened.)
- Johann Cigler and Hans-Christian Herbig, Factorization of spread polynomials, arXiv:2412.18958 [math.NT], 2024. See p. 6.
Programs
-
Mathematica
Flatten[ CoefficientList[ Table[ MinimalPolynomial[ (2*Sin[Pi/n])^2, x], {n, 1, 19}], x]] (* adapted from Jean-François Alcover, A187360 *) (* Wolfdieter Lang, Dec 24 2013 *)
Comments