cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232665 Number of compositions of 2n such that the largest multiplicity of parts equals n.

This page as a plain text file.
%I A232665 #22 Feb 06 2020 23:02:05
%S A232665 1,1,4,5,21,49,176,513,1720,5401,17777,57421,188657,617177,2033176,
%T A232665 6697745,22139781,73262233,242931322,806516561,2681475049,8925158441,
%U A232665 29740390673,99196158145,331163178476,1106489052969,3699881730901,12380449027325,41454579098853
%N A232665 Number of compositions of 2n such that the largest multiplicity of parts equals n.
%C A232665 a(n) = A238342(2n,n) = A242447(2n,n).
%H A232665 Alois P. Heinz, <a href="/A232665/b232665.txt">Table of n, a(n) for n = 0..1000</a>
%F A232665 Recurrence: see Maple program.
%F A232665 a(n) ~ c*r^n/sqrt(Pi*n), where r = 3.408698199842151... is the root of the equation 4 - 32*r - 8*r^2 + 5*r^3 = 0 and c = 0.479880052557486135... is the root of the equation 1 + 384*c^2 - 2368*c^4 + 2960*c^6 = 0. - _Vaclav Kotesovec_, Nov 27 2013
%e A232665 a(1) = 1: [2].
%e A232665 a(2) = 4: [2,2], [1,2,1], [2,1,1], [1,1,2].
%e A232665 a(3) = 5: [2,2,2], [1,3,1,1], [1,1,3,1], [3,1,1,1], [1,1,1,3].
%e A232665 a(4) = 21: [2,2,2,2], [1,1,4,1,1], [4,1,1,1,1], [1,4,1,1,1], [1,1,1,4,1], [1,1,1,1,4], [1,2,1,1,1,2], [2,1,1,1,1,2], [2,1,2,1,1,1], [1,2,2,1,1,1],[1,2,1,2,1,1], [2,1,1,2,1,1], [1,2,1,1,2,1], [2,1,1,1,2,1],[1,1,2,1,2,1], [1,1,2,2,1,1], [2,2,1,1,1,1], [1,1,1,2,2,1], [1,1,2,1,1,2], [1,1,1,2,1,2], [1,1,1,1,2,2].
%p A232665 a:= proc(n) option remember;
%p A232665      `if`(n<5, [1, 1, 4, 5, 21][n+1],
%p A232665       ((n-1)*(14911*n^4 -102036*n^3 +249203*n^2
%p A232665        -252880*n +87794) *a(n-1)
%p A232665       +(27528*n^5 -239548*n^4 +803564*n^3 -1283816*n^2
%p A232665        +963472*n -266160) *a(n-2)
%p A232665       -2*(2*n-5)*(10323*n^4 -62876*n^3 +136848*n^2
%p A232665        -125584*n +40329) *a(n-3)
%p A232665       +2*(2*n-7)*(n-2)*(1147*n^3 -4055*n^2 +4742*n
%p A232665        -1762) *a(n-4)) / (5*(n-1)*n*
%p A232665       (1147*n^3 -7496*n^2 +16293*n -11706)))
%p A232665     end:
%p A232665 seq(a(n), n=0..35);
%t A232665 b[n_, s_] := b[n, s] = If[n == 0, 1, If[n<s, 0, Expand[Sum[b[n-j, s]*x, {j, s, n}]]]]; T[n_, k_] := If[k == 0, If[n == 0, 1, 0], Sum[Function[{p}, Sum[ Coefficient[p, x, i]*Binomial[i+k, k], {i, 0, Exponent[p, x]}]][b[n-j*k, j+1]], {j, 1, n/k}]]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Feb 09 2015, after A238342 *)
%Y A232665 Cf. A232605, A332051.
%K A232665 nonn
%O A232665 0,3
%A A232665 _Alois P. Heinz_, Nov 27 2013