cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232666 6-free Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 4, 93, 97, 190, 287, 477, 764, 1241, 2005, 541, 2546, 3087, 5633, 8720, 14353, 23073, 37426, 60499, 97925, 26404, 124329, 150733, 275062, 425795, 700857, 1126652, 1827509, 2954161, 796945, 3751106, 4548051, 8299157, 12847208, 21146365, 33993573
Offset: 0

Views

Author

Brandon Avila and Tanya Khovanova, Nov 27 2013

Keywords

Comments

The sequences of n-free Fibonacci numbers were suggested by John H. Conway.
a(n) is the sum of the two previous terms divided by the largest possible power of 6.
4-free Fibonacci numbers are A224382.
The sequence coincides with the Fibonacci sequence until the first multiple of 6 in the Fibonacci sequence: 144, which in this sequence is divided by 36 to produce 4.
7-free Fibonacci numbers is A078414.

Crossrefs

Programs

  • Mathematica
    sixPower[n_] := (a = Transpose[FactorInteger[n]]; a2 = Position[a[[1]], 2]; a3 = Position[a[[1]], 3]; If[Length[a2] == 0 || Length[a3] == 0 , res = 0, res = Min[a[[2]][[a2[[1]][[1]]]], a[[2]][[a3[[1]][[1]]]]]]; res); sixFree[n_] := n/6^sixPower[n]; appendNext6Free[list_] := Append[list, sixFree[list[[-1]] + list[[-2]]]]; Nest[appendNext6Free, {0, 1}, 50]