This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232668 #17 Dec 01 2014 21:34:56 %S A232668 26,34,38,39,46,51,52,57,58,62,65,68,69,74,76,78,82,85,86,87,91,92,93, %T A232668 94,95,102,104,106,114,115,116,117,118,119,122,123,124,129,130,133, %U A232668 134,136,138,142,143,145,146,148,152,153,155,156,158,159,164 %N A232668 Natural numbers that are not (primes, 11-smooth, perfect powers or base-10 palindromes). %C A232668 The intention was to generate a sequence of uninteresting numbers. - _John R Phelan_, Dec 01 2014 %H A232668 Wikipedia, <a href="https://en.wikipedia.org/wiki/Complement_(set_theory)">Complement (set theory)</a> %H A232668 Wikipedia, <a href="https://en.wikipedia.org/wiki/Interesting number paradox">Interesting number paradox</a> %F A232668 A000027 \ A000040 \ A051038 \ A002113 \ A001597. %F A232668 A \ B represents set "subtraction", all the elements in A that are not in B. %F A232668 In other words, start with the Natural numbers (A000027). %F A232668 Remove the prime numbers (A000040). %F A232668 Remove the 11-smooth numbers, numbers whose prime divisors are all <= 11 (A051038). %F A232668 Remove the base-10 palindromes (A002113). %F A232668 Remove the perfect powers, m^k where m > 0 and k >= 2 (A001597). %F A232668 And what's left is this sequence. %F A232668 a(n) ~ n; in particular, a(n) = n + n/log n + o(n/log n). - _Charles R Greathouse IV_, Nov 27 2013 %e A232668 16 is not in the sequence since it's a perfect power, 2^4. %e A232668 19 is not in the sequence since it's prime. %e A232668 18 is not in the sequence since it's 2*3*3, so it's 11-smooth. %e A232668 22 is not in the sequence since it's a base 10 palindrome. %e A232668 26 is in the sequence since it's 2*13, so it's not prime, not 11-smooth, not a base-10 palindrome, and not a perfect power. %o A232668 (Java) public class Nnn {public static void main(String[] args) {String str = ""; for (int i = 0; i < 1000000 && str.length() < 250; i++) {if (isPrime(i) || isSmooth(11,i) || isPerfectPower(i) || isPalindrome(i)) {} else {str += i + ", ";}} System.out.println(str);} static boolean isPalindrome(int i) {return ((i+"").equals(new StringBuilder(i+"").reverse().toString()));} static boolean isSmooth(int s, int n) {if (n<2) return true; for (int i=2;i<=s;i++) {while (n%i==0) n=n/i;} return n==1;} static boolean isPerfectPower(int n) {for (int i=2;i<=Math.sqrt(n);i++) {int j=i*i; while (j<n) j*=i; if (j==n) return true;} return false;} static boolean isPrime(int n) {if (n<2) return false; for (int i=2;i<=Math.sqrt(n);i++) {if (n%i==0) return false;} return true;}} %Y A232668 This sequence is A000027 \ A000040 \ A051038 \ A002113 \ A001597. %K A232668 base,easy,nonn %O A232668 1,1 %A A232668 _John R Phelan_, Nov 27 2013