A232681 Numbers n such that the equation a^2 + 5*n*b^2 = 5*c^2 + n*d^2 has no solutions in positive integers for a, b, c, d.
2, 3, 6, 7, 8, 10, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98
Offset: 1
Keywords
Examples
n = 2 is a member of this sequence because there is no positive integer m which can be simultaneously written as both x^2+10*y^2 and 5*x^2+2*y^2. The former requires the sum of {2, 5, 7, 13, 23, 37} mod 40 prime factors of m to be even, while the latter requires the sum of {2, 5, 7, 13, 23, 37} mod 40 prime factors of m to be odd. n = 3 is a member of this sequence because there is no positive integer m which can be simultaneously written as both x^2+15*y^2 and 5*x^2+3*y^2. The former requires the sum of {2, 3, 5, 8} mod 15 prime factors of m to be even, while the latter requires the sum of {2, 3, 5, 8} mod 15 prime factors of m to be odd.
Links
- V. Raman, Proof for individual terms
Comments