This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232689 #6 Dec 06 2013 01:29:35 %S A232689 1,1,6,150,15684,6626832,11412679110,80341130055678, %T A232689 2305199459532741522,268629428492391824756106, %U A232689 126762373497858122449971372498,241676422998164497873224935953948770,1858392533076949187099229893507827126982592,57560655711123829878000426546315591572901023820252 %N A232689 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals 2^(n^2) for n>=0. %H A232689 Paul D. Hanna, <a href="/A232689/b232689.txt">Table of n, a(n) for n = 0..40</a> %F A232689 Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = 2^(n^2). %e A232689 G.f.: A(x) = 1 + x + 6*x^2 + 150*x^3 + 15684*x^4 + 6626832*x^5 +... %e A232689 ILLUSTRATION OF INITIAL TERMS. %e A232689 If we form an array of coefficients of x^k in A(x)^n, n>=0, like so: %e A232689 A^0: [1],0, 0, 0, 0, 0, 0, 0, ...; %e A232689 A^1: [1, 1], 6, 150, 15684, 6626832, 11412679110, 80341130055678, ...; %e A232689 A^2: [1, 2, 13], 312, 31704, 13286832, 22838822592, 160705169696760, ...; %e A232689 A^3: [1, 3, 21, 487], 48078, 19980558, 34278483114, 241092139452066, ...; %e A232689 A^4: [1, 4, 30, 676, 64825], 26708592, 45731714160, 321502059924816, ...; %e A232689 A^5: [1, 5, 40, 880, 81965, 33471541], 57198570060, 401934951793740, ...; %e A232689 A^6: [1, 6, 51, 1100, 99519, 40270038, 68679106021], 482390835814224, ...; %e A232689 A^7: [1, 7, 63, 1337, 117509, 47104743, 80173378159, 562869732819493], ...; ... %e A232689 then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals 2^(n^2): %e A232689 2^0 = 1 = 1; %e A232689 2^1 = 1 + 1 = 2; %e A232689 2^4 = 1 + 2 + 13 = 16; %e A232689 2^9 = 1 + 3 + 21 + 487 = 512; %e A232689 2^16 = 1 + 4 + 30 + 676 + 64825 = 65536; %e A232689 2^25 = 1 + 5 + 40 + 880 + 81965 + 33471541 = 33554432; %e A232689 2^36 = 1 + 6 + 51 + 1100 + 99519 + 40270038 + 68679106021 = 68719476736; ... %o A232689 (PARI) /* By Definition (slow): */ %o A232689 {a(n)=if(n==0, 1, (2^(n^2) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)} %o A232689 for(n=0, 20, print1(a(n)*1!, ", ")) %o A232689 (PARI) /* Faster, using series reversion: */ %o A232689 {a(n)=local(B=sum(k=0, n+1, 2^(k^2)*x^k)+x^3*O(x^n), G=1+x*O(x^n)); %o A232689 for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)} %o A232689 for(n=0, 20, print1(a(n), ", ")) %Y A232689 Cf. A232687, A232606, A002416. %K A232689 nonn %O A232689 0,3 %A A232689 _Paul D. Hanna_, Dec 06 2013