This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232711 #46 Jun 25 2024 23:44:03 %S A232711 1,2,3,4,6,8,12,15,16,19,24,30,32,38,48,51,60,64,65,76,96,97,102,120, %T A232711 128,130,137,152,155,163,175,192,194,204,219,240,243,256,260,274,304, %U A232711 307,310,326,343,350,384,388,397,408,417,429,438,480,486,491,512 %N A232711 Conjectured list of numbers whose trajectory under the '5x+1' map eventually reaches 1. %C A232711 This is conjectural in that there is no known proof that 7, 9, 11, etc. (see A267970) do not eventually cycle. - _N. J. A. Sloane_, Jan 23 2016 %C A232711 It appears that most numbers diverge, but nothing is known for certain. %C A232711 Note that the computer programs do not actually calculate a complete list of "numbers k such that the Collatz-like map T: if x odd, x -> 5*x+1 and if x even, x -> x/2, when started at k, eventually reaches 1". %H A232711 Dmitry Kamenetsky, <a href="/A232711/b232711.txt">Table of n, a(n) for n = 1..1000</a> %H A232711 Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/px+1.html.html">The px+1 problem</a>. %H A232711 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %e A232711 Beginning with 15 we get the trajectory 15, 76, 38, 19, 96, 48, 24, 12, 6, 3, 16, 8, 4, 2, 1, so 15 is a term. %t A232711 cli=Compile[{{n,_Integer}},If[OddQ[n],5n+1,n/2]//Round,RuntimeAttributes->{Listable},Parallelization->True]; okQ[n_]:=Length[NestWhileList[cli,n, #>1&, 1,200]]<200; Select[Range[550],okQ] (* _Harvey P. Dale_, May 28 2014 *) (Warning: bad program - will not find all the terms. - _N. J. A. Sloane_, Jan 23 2016) %o A232711 (JavaScript) %o A232711 for (i=1;i<2000;i++) { %o A232711 c=0; %o A232711 n=i; %o A232711 while (n>1) {c++;if (n%2==0) n/=2; else n=5*n+1;if (c>100) break;} %o A232711 if (c<101) document.write(i+", "); %o A232711 } (Warning: bad program - will not find all the terms. - _N. J. A. Sloane_, Jan 23 2016) %Y A232711 See A267969, A267970 for other trajectories under this map T. %Y A232711 Cf. A057688, A133419. %Y A232711 Cf. A070165 (usual Collatz iteration). %K A232711 nonn %O A232711 1,2 %A A232711 _Jon Perry_, Nov 28 2013 %E A232711 Entry revised (corrected definition, added warnings to programs, deleted b-file) by _N. J. A. Sloane_, Jan 23 2016