cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232716 Decimal expansion of the ratio of the length of the boundary of any parbelos to the length of the boundary of its associated arbelos: (sqrt(2) + log(1 + sqrt(2))) / Pi.

This page as a plain text file.
%I A232716 #52 Feb 28 2023 23:48:49
%S A232716 7,3,0,7,0,8,0,8,4,2,4,8,1,4,3,0,9,8,3,4,5,4,5,9,3,8,9,9,7,0,9,9,0,1,
%T A232716 3,7,7,3,6,7,2,3,2,8,7,2,9,1,6,6,0,2,7,5,7,3,5,4,9,8,3,9,1,9,5,1,0,0,
%U A232716 7,2,9,3,2,5,3,5,5,1,3,5,4,0,2,6,0,1,4,0,8,2,9,3,5,0,7,6,2,1,1,9,6
%N A232716 Decimal expansion of the ratio of the length of the boundary of any parbelos to the length of the boundary of its associated arbelos: (sqrt(2) + log(1 + sqrt(2))) / Pi.
%C A232716 Same as decimal expansion of P/Pi, where P is the Universal parabolic constant (A103710). - _Jonathan Sondow_, Jan 19 2015
%C A232716 According to Wadim Zudilin, Campbell's formula (see below) follows from results of Borwein, Borwein, Glasser, Wan (2011): Take n=-2, s=1/4 in equations (4) and (20) to see that the formula is about evaluating K_{-2,1/4}. Take r=-1/2, s=1/4 in (76) to see that K_{-2,1/4} = cos(Pi/4)-K_{0,1/4}/16. Finally, use (51) and (52) to conclude that K_{0,1/4} = 2G_{1/4} = 2*log(1+sqrt(2)). - _Jonathan Sondow_, Sep 03 2016
%H A232716 G. C. Greubel, <a href="/A232716/b232716.txt">Table of n, a(n) for n = 0..10000</a>
%H A232716 D. Borwein, J. M. Borwein, M. L. Glasser, J. G. Wan, <a href="https://doi.org/10.1016/j.jmaa.2011.06.001">Moments of Ramanujan's generalized elliptic integrals and extensions of Catalan's constant</a>, J. Math. Anal. Appl., 384 (2) (2011), 478-496.
%H A232716 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51018">Review Zbl 1291.51018</a>, zbMATH 2015.
%H A232716 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51016">Review Zbl 1291.51016</a>, zbMATH 2015.
%H A232716 J. Sondow, <a href="http://arxiv.org/abs/1210.2279">The parbelos, a parabolic analog of the arbelos</a>, arXiv 2012, Amer. Math. Monthly, 120 (2013), 929-935.
%H A232716 E. Tsukerman, <a href="http://arxiv.org/abs/1210.5580">Solution of Sondow's problem: a synthetic proof of the tangency property of the parbelos</a>, arXiv:1210.5580 [math.MG], 2012-2013; Amer. Math. Monthly, 121 (2014), 438-443.
%F A232716 Equals A103710 / A000796.
%F A232716 Empirical: equals 3F2([-1/2,1/4,3/4],[1/2,1],1). - _John M. Campbell_, Aug 27 2016
%e A232716 0.730708084248143098345459389970990137736723287291660275735498...
%t A232716 RealDigits[(Sqrt[2] + Log[1 + Sqrt[2]])/Pi,10,100]
%o A232716 (PARI) (sqrt(2) + log(1 + sqrt(2)))/Pi \\ _G. C. Greubel_, Feb 02 2018
%o A232716 (Magma) R:= RealField(); (Sqrt(2) + Log(1 + Sqrt(2)))/Pi(R); // _G. C. Greubel_, Feb 02 2018
%Y A232716 Reciprocal of A232717. Ratio of areas is A177870.
%Y A232716 Cf. A000796, A103710.
%K A232716 nonn,cons,easy
%O A232716 0,1
%A A232716 _Jonathan Sondow_, Nov 28 2013