cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232717 Decimal expansion of the ratio of the length of the boundary of any arbelos to the length of the boundary of its associated parbelos: Pi / (sqrt(2) + log(1 + sqrt(2))).

This page as a plain text file.
%I A232717 #25 Sep 08 2022 08:46:06
%S A232717 1,3,6,8,5,3,5,5,6,3,7,3,1,9,1,4,7,8,8,8,6,0,6,2,6,2,6,5,9,3,2,5,8,8,
%T A232717 1,0,8,4,2,1,4,2,4,8,0,0,1,0,6,2,1,7,3,4,9,0,5,3,9,9,1,8,5,9,5,7,9,4,
%U A232717 8,9,4,4,7,6,7,9,3,0,9,1,9,7,0,4,7,6,8,0,1,8,8,2,8,0,9,0,4,9,2,6
%N A232717 Decimal expansion of the ratio of the length of the boundary of any arbelos to the length of the boundary of its associated parbelos: Pi / (sqrt(2) + log(1 + sqrt(2))).
%C A232717 Same as decimal expansion of Pi/P, where P is the Universal parabolic constant (A103710). - _Jonathan Sondow_, Jan 19 2015
%H A232717 G. C. Greubel, <a href="/A232717/b232717.txt">Table of n, a(n) for n = 1..10000</a>
%H A232717 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51018">Review Zbl 1291.51018</a>, zbMATH 2015.
%H A232717 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51016">Review Zbl 1291.51016</a>, zbMATH 2015.
%H A232717 J. Sondow, <a href="http://arxiv.org/abs/1210.2279">The parbelos, a parabolic analog of the arbelos</a>, arXiv 2012, Amer. Math. Monthly, 120 (2013), 929-935.
%H A232717 E. Tsukerman, <a href="http://arxiv.org/abs/1210.5580">Solution of Sondow's problem: a synthetic proof of the tangency property of the parbelos</a>, arXiv 2012, Amer. Math. Monthly, 121 (2014), 438-443.
%F A232717 Equals A000796 / A103710.
%e A232717 1.36853556373191478886062626593258810842142480010621734905399...
%t A232717 RealDigits[Pi/(Sqrt[2] + Log[1 + Sqrt[2]]),10,100]
%o A232717 (PARI) Pi/(sqrt(2) + log(1 + sqrt(2))) \\ _G. C. Greubel_, Jul 27 2018
%o A232717 (Magma) R:= RealField(); Pi(R)/(Sqrt(2) + Log(1 + Sqrt(2))) // _G. C. Greubel_, Jul 27 2018
%Y A232717 Reciprocal of A232716. Ratio of areas is A232715.
%Y A232717 Cf. A000796, A103710.
%K A232717 cons,easy,nonn
%O A232717 1,2
%A A232717 _Jonathan Sondow_, Nov 28 2013